Инструкция внутренний контроль качества хим лаборатории. Учебный центр ЭкоСфера реализует обучение по внутрилабораторному контролю качества испытательных лабораторий. Контроль стабильности результатов анализа с применением контрольных карт. Особенности пр


Обратим внимание на следующее. Рекомендации РМГ 76 разработаны с учётом и в развитие требований международных стандартов серии ГОСТ Р ИСО 5725 (далее 5725), в первую очередь 6-й её части , касающейся ВЛК. Так вот, из двух интересующих нас видов контроля в последнем документе присутствует только проверка приемлемости. Оперативный контроль здесь не регламентируется. И в этом, думается, одна из причин упомянутого выше «смешивания»: при изучении оперативного контроля по РМГ 76, где, как заявлено, развиваются положения 5725, хочется найти в «родительском» документе первоисточник, и в качестве такового может «подвернуться» очень похожая проверка приемлемости.

Что касается наследования, то здесь нужно сказать, что организацией ФГУП «УНИИМ» разработана и выпущена инструкция МИ 2881-2004 (далее МИ 2881), играющая для проверки приемлемости ту же роль, что и РМГ 76 для ВЛК, а также РМГ 64-2003 для оценивания показателей точности . Наглядно это наследование изображено на схеме . Заметим, что помимо алгоритмов и методов, наследуемых из 5725, разработанные РМГ/МИ содержат свои собственные, и весьма значительные, добавления.

В контексте настоящей статьи необходимо также учитывать некоторые положения и алгоритмы, содержащиеся в нормативных документах (НД) на методики выполнения измерений (МВИ). Дело в том, что в этих документах, как отечественных, так и зарубежных, в той или иной степени также регламентируется контроль погрешностей. Большинство документов по МВИ создавались либо до внедрения документов , либо без их учёта. Из-за этого возникают определённые методические трудности для согласованного их использования совместно с регламентированными в новых документах методами ВЛК . Об этом речь будет идти далее.

Показатели качества

При проведении любых видов ВЛК основным критерием для принятия решений является сравнение получаемых при измерениях значений с контрольными пределами. Эти пределы вычисляются на базе показателей качества методик анализа или показателей качества результатов анализа . Терминология и методология их установления и использования имеет ряд особенностей. Рассмотрение их важно для дальнейшего изложения.

Анализ терминологии

Относящиеся к ВЛК термины и определения встречаются во многих НД. Между ними не всегда имеется строгая синхронизация. А для однозначной трактовки используемых формулировок зачастую требуется дополнительный анализ. Ниже рассматриваются некоторые проблемные понятия, важные для оперативного контроля.

Измеряемые значения

Без ограничения общности можно считать, что конечным итогом проведения любого КХА – другими словами измерения по МВИ – является некоторое числовое значение, выдаваемое в качестве результата для использования его в тех или иных целях. В 5725 такое значение называется результатом измерений , в РМГ 76 – результатом контрольного измерения , в МИ 2881 и РМГ 76 – результатом анализа . В других НД, в частности на методики измерений, могут встречаться и отличные названия, например окончательный результат . Мы будем придерживать термина результат измерения .

Другими важными для нас «объектами», фигурирующими в КХА, являются значения, полученные в результате двух или более повторений всех шагов измерения и используемые для усреднения с целью получения результата измерения (иногда вместо усреднения вычисляется медианы – см. далее). В 5725 это – единичные наблюдения , в РМГ 76 – результаты контрольных определений , в МИ 2881 и РМГ 76 – результаты единичных анализов (единичных определений) . Иногда также применяется термин параллельные определения , где слово «параллельные» означает получение всех значений в условиях повторяемости (см. далее). Мы будем придерживаться сочетания результат(ы) параллельного(ых) определения(ий) , поскольку условия повторяемости в рассматриваемых далее алгоритмах должны соблюдаться всегда.

Особенности показателя повторяемости

На практике при трактовке параметров погрешностей, приводимых в различных НД, возникают определённые трудности. Не в последнюю очередь это связано с неоднозначностью трактовки, в том или ином контексте, некоторых терминов, что было проиллюстрировано выше. Есть и другие причины.

Стандарты 5725 «пришли к нам» из-за рубежа и, вообще говоря, без адаптации (это аутентичный перевод). Применять же их нужно, в первую очередь, к отечественным МВИ. Но в практике составления зарубежных и отечественных НД на методики сложились различия.

Зарубежные НД практически никогда не регламентируют усреднение для получения результата измерений, поэтому та или иная форма термина «параллельные определения» в них отсутствует. (По крайней мере это подтверждается нашим анализом нескольких десятков американских и международных стандартов – ASTM и ISO соответственно, – используемых на предприятиях нефтепереработки.) Как итог, документы 5725 оперируют только результатами измерений и никогда – результатами параллельных определений (в том смысле, как это понимается в рассматриваемых здесь РМГ/МИ). Это в полной мере относится и к определению повторяемости , которая в 5725-6 (см. п.п. 3.12–14) определяется как степень близости независимых результатов измерений в условиях повторяемости. А это, в свою очередь, означает, что для того, чтобы реализовать какую-либо разновидность контроля повторяемости, необходимо дважды полностью (от начала до конца) выполнить МВИ .

Примечание. Именно из-за этого для повторяемости в 5725 количество параллельных измерений (не определений!) всегда равно 2.

Совсем иная картина наблюдается в отечественных НД на методики. Здесь практически всегда (если специфика МВИ это допускает) на последнем этапе для получения результата измерения регламентируется усреднение по двум или более результатам параллельных определений. Из статистики нетрудно понять, что разброс усреднённых результатов измерений , выполненных в условиях повторяемости, будет пропорционален разбросу используемых для усреднения результатов , в нашем случае параллельных определений (коэффициент пропорциональности равен, где n – количество этих определений). В связи с этим возникает естественное желание не делать для контроля повторяемости повторное измерение, как это регламентировано в 5725, а «удовлетвориться» уже полученными в первом измерении результатами параллельных определений. Что, собственно, и регламентируется в РМГ/МИ.

Правильно это или нет, дело вкуса. Но одно несомненно: в 5725 и в наследуемых РМГ/МИ повторяемость определяется по-разному . В первом случае это близость результатов измерений , во втором – близость результатов параллельных определений . Это может приводить к затруднениям при изучении и сравнении относящихся к ВЛК документов. К примеру, такая цитата из 5725 (стр. V): «экстремальные показатели прецизионности – (это) повторяемость, сходимость и воспроизводимость» – однозначно говорит, что повторяемость и воспроизводимость трактуются здесь как предельные значения чего-то одного (прецизионности). Но в РМГ это разные понятия: повторяемость относится к результатам параллельных определений, воспроизводимость – к результатам измерений.

Примечание. Осознание этого факта поможет преодолеть интуитивное предубеждение, что повторяемость всегда больше воспроизводимости. Если факторы, влияющие на разброс результатов измерений за счёт смены испытателей, оборудования, времени суток и т.д., незначительны (например в опытах в пределах лаборатории), то влияние вполне может оказаться преобладающим, и повторяемость превысит воспроизводимость.

Вышеизложенное важно для практической интерпретации характеристик погрешностей, приводимых в НД на МВИ, с целью их использования в ВЛК. Это рассматривается ниже.

Состав показателей качества

Как известно, ВЛК оперирует четырьмя показателями качества методики/результатов:

    повторяемости, или сходимости (одно и то же для методики и результатов);

    воспроизводимости (для методики) / внутрилабораторной (ВЛ) прецизионности (для результатов);

    правильности (разные для методики и для результатов);

    точности (разные для методики и для результатов).

Приведём некоторые особенности перечисленных показателей.

    Стандарты 5725 оперирует только показателями качества методики.

    Показатели правильности в оперативном контроле и проверке приемлемости не используются.

    Показатели точности выражаются в виде доверительного интервала погрешности результатов анализа и обычно проблем с трактовкой не имеют. Обозначаются как Δ и Δ л для методики и результатов соответственно (здесь и далее индекс «л» означает «лабораторный»).

    Показатель воспроизводимости. Как упоминалось выше, считается предельным случаем показателя прецизионности в условиях воспроизводимости, поэтому далее он и показатель ВЛ прецизионности будут называться просто показателями прецизионности. В математическом аппарате в РМГ/МИ в качестве основного для этих показателей используется представление в виде среднеквадратического отклонения (СКО), обозначаемого как σ R . и σ Rл. В то же время в НД на методики чаще используется предел прецизионности для двух результатов измерений. Наиболее распространённое обозначение R и R л.

    Показатель повторяемости в РМГ/МИ также принято выражать в виде СКО, но теперь уже параллельных определений, и обозначать как σ r (считается, что σ rл = σ r как предельное значение «прецизионности параллельных определений» в условиях повторяемости). По аналогии с прецизионностью, в НД на методики чаще используется предел повторяемости r для n параллельных определений.

Трактовка погрешностей в НД на МВИ

Большинство отечественных НД создавались до появления (или без учёта) 5725 и наследуемых документов, так что формы представления в них погрешностей достаточно разнообразны и значительно отличаются от того, что «хотелось бы видеть». Мы не будем здесь касаться вопросов аналитического представления (проще говоря, формул) зависимостей показателей погрешностей от измеряемого значения (это будет рассмотрено в других публикациях), а обратимся к особенностям, связанным с возможным видом их представления: СКО или предел.

Итак, чтобы непосредственно (без преобразований формул) воспользоваться математикой ВЛК, необходимо выполнить два шага:

Шаг 1. Привести показатели повторяемости и прецизионности к СКО, если они заданы в виде пределов. Для воспроизводимости это означает выполнение преобразования σ R = R/Q(P, 2) º R/2,77, для повторяемости – σ r = r/Q(P, n). При этом, с учётом предыдущего раздела, нужно внимательно отслеживать, какая повторяемость представлена в НД. Например, в ASTM D 1319–03 регламентировано всё-таки, вопреки тому, что утверждалось выше по поводу зарубежных стандартов, усреднение по представительной выборке. Но так как стандарт зарубежный, то, как мы уже знаем, в нём повторяемость задаётся для двух результатов измерений. И верным будет соотношение σ r = r/Q(P, 2). Тем более что количество усредняемых значений n представительной выборки из данного документа не узнать.

Шаг 2. Установить каким-либо способом ВЛ показатели прецизионности и точности (для повторяемости, как мы знаем, в качестве внутрилабораторного используется показатель методики). В идеале это проведение специального эксперимента по оцениванию (приложение В в РМГ 76). Возможна также оценка по результатам контрольных карт (КК). Это всё – экспериментальные методы. В РМГ 76 регламентированы также (п.4.7) расчётные способы оценки. И хотя они рассматриваются там как временные: должны применяться лабораторией только на стадии внедрения МВИ, – на практике (например в стандартах предприятия или руководствах по качеству лабораторий) их довольно часто рассматривают как «окончательные». В этом есть определённый смысл. И вот почему.

У контроля качества результатов измерений есть две цели:

    Отслеживать стабильность процессов производства, а значит и одной из важных его составляющих – процесса контроля качества материалов и продукции.

    Гарантировать заявленную погрешность продукции, а значит и главный её критерий – погрешность методик испытаний.

Первая задача, вообще говоря, является внутренней для предприятия или лаборатории. «Философия» примерно такова: если производство налажено, желательно, чтобы оно было стабилизировано. А для этого желательно, чтобы был стабилизирован и процесс измерений. Поэтому изменения в погрешностях результатов измерений, даже если они не нарушают погрешностей, заявленных в НД на МВИ, являются нежелательными. То есть – эта задача требует установления ВЛ показателей качества результатов измерений и впоследствии их контроля.

Вторая задача ориентирована на заказчика, будь то внешнего или внутреннего. И, по большому счёту, его интересует гарантирование погрешности результатов измерений, заявленной в НД на МВИ. То есть – контролироваться должны показатели качества методик измерений.

Примечание. Иногда желательно уменьшить заявляемые погрешности измерений. Например в экологических испытаниях, где эти погрешности учитываются в нормативах контроля, превышение которых влечёт за собой штрафные санкции. В таких случаях, разумеется, также потребуются внутрилабораторные показатели.

Из сказанного следует, что существуют ситуации, когда целесообразно использовать для контроля исключительно показатели качества методик. То есть поступать так, как это непосредственно прописывается в НД на эти методики. В этом смысле использование расчётных показателей по РМГ 76 является неким компромиссным решением и вполне допустимо, если оно принято осознанно и зафиксировано в руководстве по контролю качества лаборатории. Правда, в этом случае может потребоваться некоторая коррекция расчётов, в том числе и при программировании приложений поддержки ВЛК.

В заключение раздела коснёмся небольшого вопроса, вызывающего иногда затруднения на практике. Речь идёт о выборе формул для оценки расчётных показателей. В РМГ 76 (п.7.4) приводится два набора:

    первый набор характеризуется тем, что все показатели, кроме повторяемости, умножаются на 0,84. Должен применяться, когда для данной МВИ не планируется использование КК,

    второй набор характеризуется тем, что показатель погрешности не остаётся без изменений, а показатель правильности пересчитывается (с новой прецизионностью). Должен применяться, когда КК для МВИ планируются.

Обоснование всему этому, видимо, таково. При ведении КК рано или поздно будут сделаны регламентируемые в РМГ оценки внутрилабораторных показателей, будет выполнено их протокольное оформление для последующего использования в ВЛК. Если же ведение КК не планируется, «приходится слегка подправить» показатель погрешности.

Примечание. Употреблённое выше «слегка подправить», умножив на 0,84 (или, что то же самое, разделив на 1,2), с точки зрения статистики означает сужение интервала погрешности до уровня доверительной вероятности 0,9.

Алгоритмы процедур контроля

Образцы (контролируемые или используемые для контроля)

Согласно РМГ 76, оперативный контроль проводится время от времени при наступлении определённых событий, таких как смена партии реактивов, использование средств измерений после ремонта, новая серия рабочих проб и т.п. В то же время согласно МИ 2881 (как и 5725-6) проверка приемлемости единичных результатов осуществляют при получении каждого результата анализа рабочих проб. иллюстрирует такое соотношение между рассматриваемыми образцами.

Примечание. Существует некая неоднозначность в том, как употреблять термины проба , образец , измерение и пр. В частности, когда в целях контроля выполняется сразу несколько измерений или назначается повторное измерение. Если измерения неразрушающие, уместно, видимо, говорить об измерениях . В противном случае более точным будет термин образец (повторный или аликвотный). Думается, эта неоднозначность не приведёт к недоразумениям при чтении статьи.


Рис. 2 «Встраивание» образцов оперативного контроля в последовательность рутинных испытаний, проводимых по конкретной МВИ

Проверка приемлемости

По некоторым соображение рассмотрение интересующих нас алгоритмов контроля удобно начать с проверки приемлемости результатов, хотя это и не основная тема статьи.

Проверку приемлемости применяют к результатам, получаемым в условиях повторяемости или воспроизводимости. Последняя ситуация рассматриваться не будет, так как проверка приемлемости в этом случае относится в основном к взаимоотношениям между лабораториями, например между поставщиком и потребителем, что «далеко» от оперативного контроля.

Примечание. Напомним, что условиями повторяемости называются такие условия, когда измерения выполняются «по одной и той же методике на идентичных пробах в одинаковых условиях (один и тот же оператор, одна и та же установка и т.п.) и практически в одно и то же время (то есть подряд)». Условиями же воспроизводимости называются условия, когда имеется одна и та же методика и используются идентичные пробы, а всё остальное меняется. Чаще всего речь идёт об измерениях в различных лабораториях.

Согласно МИ 2881 проверка приемлемости в условиях повторяемости (далее в тексте условия уточняться не будут) применяется к результатам параллельных определений отдельных результатов. Проверка применяется к рутинным пробам (на – верхний ряд), причём ко всем. И если это так, то говорят, что измерения выполняются с проверкой приемлемости.

В 5725 даётся несколько иное определение. Связано это с тем, что, как отмечалось выше, в зарубежных НД «нет» параллельных определений. Поэтому в ситуациях с повышенными требованиями к результатам измерений процедура МВИ может выполняться два или более раз подряд и подвергаться контролю приемлемости для установления окончательного результата по этим измерениям. Такой алгоритм может быть прописан, например, в технических условиях (ТУ) на продукцию или в договоре. В отличие от отечественной практики, где выполнение «нескольких измерений подряд» называется параллельными определениями или чем-то подобным прописывается непосредственно в НД на МВИ.

Несмотря на расхождение в терминологии и некоторые нюансы, алгоритм проверки (), регламентированный в МИ 2881, фактически полностью совпадает с соответствующим алгоритмом 5725-6.

Примечание. В 5725-6 имеется также алгоритмы с получением другого количества дополнительных результатов. Принципиально они не отличаются от приведённого на .

Рис. 3 Алгоритм проверки приемлемости результатов измерений по 5725-6

Отметим следующие важные моменты:

    Контролируется (проверяется) только повторяемость.

    Результатом проверки приемлемости является установление результата измерения.

    Количество единичных результатов измерений, по которому определяется результат измерения, зависит от хода проверки приемлемости.

    Результат измерения может выражаться не только в виде среднего, но и в виде медианы.

Стоит сказать ещё вот о чём. В большинстве отечественных НД на МВИ регламентируется проверка приемлемости в виде простой проверки «в норме / не в норме». Фактически это означает, что в случае неудовлетворительной проверки результат попросту перемеряется.

Особая ситуация в зарубежных НД. Стандартная формулировка в них: «разница между двумя результатами может превышать контрольный предел только в одном случае из двадцати» (5% в соответствии с принятой в лабораторной практике доверительной вероятностью 0,95). Фактически здесь не идёт речь о повторных или дополнительных измерениях, а об отслеживании данных за некоторый промежуток времени. Последовательное применение этого положения приведёт к чему-то похожему на ведение КК.

Как в описанных случаях применить алгоритм , не нарушая НД? Ответ дан в МИ 2881: следует записать новый алгоритм в ТУ, руководство по качеству и т.п.

Последнее замечание. При реализации алгоритма затруднения может вызвать то обстоятельство, что ни в 5725, ни в МИ не регламентируется способ определения опорного значения, по которому вычисляется норматив контроля в случаях, когда показатель повторяемости зависит от измеряемой величины. Видимо, не остаётся ничего другого, как брать в качестве X оп текущее среднее значение, даже если затем в качестве окончательного результата будет использована медиана. Думается, это достаточно эффективно, поскольку вероятность такого события (необходимость медианы) крайне мала: при доверительной вероятности 0,95 два подряд нарушения повторяемости будут наступать в одном случае из 400 (0,25%).

Оперативный контроль

В отличие от проверки приемлемости, оперативный контроль проводится на специальных, дополнительных по отношению к рутинным, пробах (на Рис. 2 – нижний ряд). Даже если предположить, что в каких-то случаях только что испытанная рутинная проба тут же «включается» в оперативный контроль, скажем в методе добавок, всё равно это будет именно контрольное испытание, но с «некоторыми особенностями» получения первого измерения. К тому же такую практику нельзя признать целесообразной, так как в этом случае не так-то просто достигнуть точного соблюдения регламента оперативного контроля в соответствии с РМГ 76.

Алгоритмы оперативного контроля подразделяются на две категории:

Контроль повторяемости

Как отмечено выше, контроль повторяемости является вспомогательным: он должен, согласно п.5.10.2 в РМГ 76, применяться к результатам измерений, выполняемых внутри алгоритмов оперативного контроля погрешности (а также в не рассматриваемых здесь периодическом и выборочном статистическом контролях). Напомним, что контроль повторяемости выполняется только для МВИ, у которых для получения результата измерения предусмотрены параллельные определения.

Внутрилабораторный контроль качества в клинико-диагностической лаборатории - комплекс мероприятий направленных на обеспечение качества клинических лабораторных исследований.

Организация внутрилабораторного контроля качества

Основными задачами КДЛ является проведение необходимых клинических лабораторных исследований и повышение их качества. Качество лабораторных исследований должно соответствовать требованиям по аналитической точности, установленным нормативными документами Минздрава России, что является обязательным условием надежной аналитической работы КДЛ. Важным элементом обеспечения качества является внутрилабораторный контроль качества, который состоит в постоянном (повседневном в каждой аналитической серии) проведении контрольных мероприятий: исследовании проб контрольных материалов или применении мер контроля с использованием проб пациентов. Целью внутрилабораторного контроля является оценка соответствия результатов исследований установленным критериям их приемлемости при максимальной вероятности погрешности и минимальной вероятности ложного отбрасывания результатов выполненных лабораторией аналитических серий.

Внутрилабораторный контроль качества обязателен в отношении всех видов исследований, выполняемых в лаборатории. Правила внутрилабораторного контроля качества количественных исследований содержатся в Приказе МЗ РФ №45 от 07.02.2000 «О системе мер по повышению качества клинических лабораторных исследований в учреждениях здравоохранения Российской Федерации». При проведении контроля качества лабораторных исследований используются следующие термины:
Точность измерений - качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям всех видов, как систематических, так и случайных.
Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.
Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.
Правильность измерений - качество измерений, отражающее близость к нулю систематических погрешностей в их результатах.
Случайная погрешность измерения - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.
Аналитическая серия - совокупность измерений лабораторного показателя, выполненных единовременно в одних и тех же условиях без перенастройки и калибровки аналитической системы.
Внутрисерийная воспроизводимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одной и той же аналитической серии.
Межсерийная воспроизводимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в разных аналитических сериях.
Общая воспроизводимость - качество измерений, отражающее близость друг к другу результатов всех измерений.
Установленное значение - метод-зависимое значение определяемого показателя, указываемое изготовителем контрольного материала в паспорте или инструкции.
Источниками погрешностей, выявляемых системой внутрилабораторного контроля качества, могут быть внутренние (лабораторные) и внешние факторы. К внешним факторам относятся принцип аналитического метода, качество приборов и реактивов, калибровочных средств. К внутренним - несоблюдение условий, установленных методикой проведения аналитического исследования: времени, температуры, объемов, правил приготовления и хранения реактивов.

В зависимости от характера влияния на результаты аналитического исследования различают систематические и случайные погрешности, которые выявляются с помощью многократного исследования контрольного материала в аналитических сериях. Систематическая погрешность характеризует правильность измерений, которая определяется степенью совпадения среднего результата повторных измерений контрольного материала (Х) и установленного значения измеряемой величины. Разность между ними называется смещением и может быть выражена в абсолютных или относительных величинах и рассчитывается в процентах по формуле:
В= ((Х – УЗ)/УЗ) х 100 %, где Х - среднее значение измерений контрольного материала, У3 - установленное значение.

Случайная погрешность отражает разброс измерений и проявляется в различии между собой результатов повторных измерений определяемого показателя в одной и той же пробе. Математически величина случайной погрешности выражается среднеквадратическим отклонением (S) и коэффициентом вариации (CV).

Внутрилабораторный контроль качества включает контроль воспроизводимости и точности (правильности) и может осуществляться с помощью методов, использующих специальные контрольные материалы или средства ряда методов, не требующих контрольных материалов. Методы, использующие контрольные материалы: метод контрольных карт; метод «Сизит»; метод контрольных правил Westgard. Методы, использующие данные пациентов:
Метод параллельных проб.
Метод средней нормальных величин («средней нормы»).
Исследование случайной пробы.
Исследование повторных проб.
Исследование смешанной пробы.

Метод контрольных карт. Ежедневно работник лаборатории при проведении всех видов анализа наряду с опытными пробами исследует контрольный материал. Определение содержания компонентов в контрольном материале проводят одновременно с исследованием опытных проб, при этом вместо сыворотки или плазмы крови берут контрольный материал в таком же количестве. Контрольные материалы могут быть приготовлены в лаборатории самостоятельно (сливные сыворотки) или закуплены у фирм - коммерческие контрольные материалы. В свою очередь, коммерческие сыворотки могут быть аттестованными (с известным содержанием компонентов) и неаттестованными (с неизвестным содержанием компонентов). Неаттестованные контрольные сыворотки в первую очередь используются для контроля воспроизводимости, а аттестованные - правильности.

Определение каждого компонента в контрольном материале проводят методом, применяемым в данной лаборатории. Результаты ежедневно регистрируются. Для аттестованных контрольных материалов по 20-ти результатам, полученным в 20 выполненных сериях, рассчитывают:
среднюю арифметическую Х;
среднее квадратическое отклонение S;
коэффициент вариации CV;
величину относительного смещения В.

Если используют неаттестованный материал или сливные сыворотки, по полученным результатам рассчитывают X, S и CV. Проверяют, что полученные значения В и CV не превышают их предельно допустимых значений. Если это условие выполняется, делают вывод о возможности использования рассматриваемой методики для целей лабораторной диагностики и переходят к построению контрольных карт. В случае превышения одним из полученных значений В или CV соответствующих предельно допустимых значений проводят дополнительную работу по устранению источников повышенного смещения или вариации или избирают другую методику определения данного показателя.

Контрольная карта представляет собой график, на оси абсцисс которого откладывают номер аналитической серии (или дату ее выполнения), а на оси ординат - значения определяемого показателя в контрольном материале. Через середину оси ординат проводят линию, соответствующую средней арифметической величине X, и параллельно этой линии отмечают линии, соответствующие контрольным пределам:
X ± 1S
X ± 2S
X ± 3S

С использованием построенных контрольных карт осуществляют оперативный («текущий») контроль качества результатов определения исследуемого показателя. С этой целью в каждой аналитической серии проводится по одному измерению в каждом из двух контрольных материалов (N и P); или два измерения в одном и том же контрольном материале, если используется единственный материал (в последнем случае на контрольную карту наносят по две точки на серию).

Оценку результатов исследования контрольных материалов проводят с использованием контрольных правил Westgard:
1 2S - если один из результатов анализа контрольных материалов выходит за пределы (х±2S), то проверяется последовательно наличие всех нижеследующих признаков, и аналитическая серия признается неудовлетворительной, если присутствует хотя бы один из них;
1 3S - одно из контрольных измерений выходит за пределы (х±3S);
2 2S - два последних контрольных измерения превышают предел (х+2S) или лежат ниже предела (Х-2S);
R 4S - два контрольных измерения в рассматриваемой аналитической серии расположены по разные стороны от коридора х±2S (не применяется к одному измерению в серии единственного контрольного материала);
4 1S - четыре последних контрольных измерений превышают (х+1S) или лежат ниже (х-1S);
10 X - десять последних контрольных измерений располагаются по одну сторону от линии, соответствующей X.

Появление контрольных признаков 1 3S и R 4S свидетельствует об увеличении случайных ошибок, в то время как признаки 2 2S , 4 1S , I0 X - об увеличении систематической ошибки методики. После устранения причин появления повышенных погрешностей все пробы, проанализированные в этой серии (и пациентов, и контрольные), исследуют повторно. Методы, использующие контрольные материалы, наиболее широко применяются для контроля ачества в КДЛ. Однако эти методы не выявляют ошибку в целом.

Контроль по ежедневным средним. Для многих исследований в качестве дополнительного можно рекомендовать контроль по ежедневным средним, в котором используются образцы или результаты исследования образцов пациентов . Условия, необходимые для внедрения метода: число проб пациентов, исследуемых ежедневно, должно быть достаточным для статистической достоверности данных (30 и более, значение этого числа зависит от анализируемого компонента); контингент обследуемых лабораторией пациентов должен быть достаточно однородным (по патологии , полу , возрасту); число усредняемых результатов должно быть примерно одинаковым, и оно зависит от анализируемого компонента.

Последовательность процедур:
Ежедневно из полученных в течение дня результатов проводится рассчет ежедневной средней арифметической величины (х), и эта процедура повторяется в течение 20 дней.
Даже из 20 ежедневных средних проводится расчет общего среднего х общ. и среднего квадратичного отклонения (S).
Рассчитываются контрольные пределы (X ОБЩ. ± 1S, Х ОБЩ. ± 2S, Х ОБЩ. ± 3S) и строится контрольная карта.
После построения контрольной карты в лаборатории ежедневно рассчитывается х из всех результатов каждого анализируемого показателя, и полученное значение наносится на карту в виде точки.

Анализ контрольной карты проводится по правилам Westgard.

Метод контроля воспроизводимости по дубликатам. Принцип данного метода внутрилабораторного контроля качества состоит в проведении двух параллельных исследований определяемого показателя в выбранной наугад пробе пациента, нахождении величины относительного размаха (R i , %) между первым значением показателя (Х 1) и вторым (Х 2) и сравнении ее с установленными контрольными пределами. Последовательность процедур:
определить уровень определяемого показателя в выбранной наугад пробе пациента дважды в течение одной аналитической серии;
рассчитать величину относительного размаха между двумя определениями по формуле:
R i = ((2 х (X 1 - X 2))/(X 1 + X 2)) х 100 %, где (Х 1 –Х 2) - разница между результатами определения по абсолютному значению;
повторить описанную процедуру в 20 аналитических сериях;
из полученных 20 значений (R 1, 2, 3..., 20) рассчитать среднее арифметическое значение R:

Далее рассчитывают контрольные пределы, умножая полученное значение R на коэффициенты, соответствующие 95% и 99% квантилям распределения размахов: для 95%-ной контрольной границы - 2,46; для 99%-ной контрольной границы - 3,23. Исходя из полученных контрольных пределов строится контрольная карта, где на оси абсцисс откладывается нулевая линия (она будет соответствовать нулевому размаху), на которой отмечается номер аналитической серии, а параллельно ей в удобном масштабе проводят линии, соответствующие R и контрольным границам 95% и 99%. На оси ординат отмечают уровень определяемого показателя. Далее, в каждой аналитической серии проводится параллельное исследование определяемого показателя в выбранной наугад пробе пациента. Пробы, предназначенные для параллельного исследования, должны располагаться случайным образом по длине аналитической серии. Полученное значение относительного размаха сравнивается с контрольными границами. Если хоть одно полученное значение выходит за контрольную границу, соответствующую 99% (контрольный признак «1 R99 », или если два последовательных значения выходят за контрольную границу «95% (контрольный признак «2 R9S »), то такая аналитическая серия считается непригодной, исследование проводится повторно.

Исследование смешанной пробы. При оценке воспроизводимости методом параллельных проб получают более близкие значения, чем обычно получают при наличии случайных ошибок. В методе смешанной пробы это исключено. Метод заключается в следующем: из группы образцов случайно выбирают два (А и В); из каждого образца А и В берут равные объемы и смешивают (образец С); исследуют все три образца, вычисляют теоретическое содержание компонента в образце С((А+В)/2) и различие между теоретическим и исследованным содержанием ((А+В)/2–С). Для построения контрольной карты по этому методу следует проводить исследование в течение 40 дней. Затем рассчитывают среднюю отклонения (d ср.) для единичных анализов путем сложения всех различий (опуская знаки) и деления на 40. Затем готовят контрольную карту, на которой чертят три прямых: 50% прямая составляет 0,845 dCP; 95% прямая составляет 2,5 dCP; 99,5% прямая составляет 3,5 dCP.

В дальнейшем ежедневно готовят смешанную пробу и результат отмечают на карте. Каждая точка представляет собой различие между теоретической величиной, рассчитанной как среднее двух проб, и действительной величиной, полученной исследованием смешанной пробы. Если много точек располагается выше прямых 95% и 99,5%, необходимо провести соответствующие мероприятия для выявления возможных источников ошибок.

Особенности контроля качества гематологических исследований

В связи со спецификой гематологических исследований контроль качества их предполагает наличие определенных контрольных средств и материалов, которые не используются в других видах лабораторных исследований. Для контроля качества определения содержания гемоглобина используются стандартные растворы гемиглобинцианида с известным содержанием Нb и специальные контрольные растворы (донорская кровь, лизированная кровь и консервированная кровь). Стандартный раствор гемиглобинцианида применяют для контроля правильности работы фотометров и построения калибровочной кривой в гемиглобинцианидном методе определения Нb в крови. Для контроля воспроизводимости определения Нb применяется раствор лизированной крови (гемолизат). Для приготовления гемолизатов используют: консервированную человеческую цитратную кровь, можно с истекшим сроком годности; консервированную лошадиную кровь; донорскую человеческую кровь, свежую, собранную в сосуд с 0,6 моль/л раствором лимоннокислого натрия из расчета 1:5.

200 мл полученной цитратной крови центрифугируют при 3000 об/мин в течение 30 мин. Плазму сливают, к эритроцитам добавляют 100 мл стерильной дистилированной воды и тщательно перемешивают на магнитной мешалке в течение 30 мин. Раствор помещают в холодильник при -20 градусах на 24 часа. На следующий день раствор размораживают и вновь тщательно перемешивают в течение 30 мин.

Затем раствор фильтруют в асептических условиях через стеклянный фильтр Millipore (соответствует №4 - с величиной пор 4–10 мкм) и разливают в стерильные пузырьки по 1 мл. Хранят раствор в холодильнике, оптимальная t = –20°С. Стабилен 1 год. Для оценки воспроизводимости определения концентрации Нb гемолизат исследуют в течение 20 дней, из полученных данных рассчитывают XСР, S, CV, контрольные пределы (X± 2S) и строят контрольную карту. Коэффициент вариации не должен превышать 5%.

Для контроля правильности используют контрольную кровь с известным содержанием гемоглобина. Контрольная кровь исследуется так же, как обычные пробы пациентов, т. е. в тех же случаях и в тех же условиях. Результаты исследования Нb в контрольной крови сравнивают с паспортными значениями, указанными в инструкции производителя, и рассчитывают смещение В. Оно не должно быть более 4%.

Для контроля качества подсчета клеток крови применяют следующие контрольные материалы: консервированная или стабилизированная кровь; фиксированные клетки крови (суспензии); контрольные мазки крови. Контроль качества определения эритроцитов осуществляется по принципу опосредованного контроля методом контрольных карт. В течение 2-х дней проводят 20 определений количества эритроцитов в консервированной крови, рассчитывают контрольные пределы и строят контрольную карту. Коэффициент вариации при подсчете эритроцитов в контрольном материале не должен превышать 5%.

Для контроля качества подсчета лейкоцитарной формулы в мазках крови используются контрольные мазки. Они готовятся из капиллярной крови доноров и больных обычным способом. Затем контрольные мазки многократно просчитываются (не менее 20 раз) по 200 клеток квалифицированными специалистами (не менее 5 человек). Из полученных данных статистически рассчитываются критерии определения правильности подсчета мазка путем рассчета X и S. Для увеличения срока хранения мазка используют клей БФ-6, образующий тонкую прозрачную пленку, герметически приклеивающуюся к поверхности мазка и стекла и предохраняющую мазок от воздействия окружающей среды. Подсчет лейкоформулы считается правильным, если результаты подсчета клеток входят в рассчитанные контрольные границы (X ± 2S) для каждого вида клеток крови.

Контроль качества исследований крови

Степень точности получаемых результатов исследований мочи в основном зависит от квалификации лаборанта, используемого оборудования, реактивов и метода исследования. Для получения правильных и воспроизводимых результатов исследования химического состава мечи используют контрольные материалы, близкие, по возможности, к образцам мочи пациентов, и контрольные мазки для контроля качества микроскопических исследований осадка мочи. В качестве контрольных материалов для контроля химического состава мочи используют: водные растворы веществ; слитую мочу с консервантами; искусственные растворы мочи с добавками веществ, исследуемых в моче.

На контрольных материалах проверяют методы, обычно применяемые в лаборатории для качественного и количественного исследования химического состава мочи. Водные растворы веществ с известным содержанием используются для контроля качества исследований химического состава мочи (например, раствор глюкозы , ацетона, альбумина). Для приготовления водных растворов используют дистиллированную воду, соответствующую ГОСТ 6709-72, и реактивы квалификации хч и чда.

Водные растворы хранят в холодильнике в течение 1 месяца. Для контроля качества исследований химического состава мочи можно использовать слитую мочу, приготовленную в лаборатории. К 1 л свежей человеческой мочи добавляют 2 г ЭДТА и при энергичном встряхивании и перемешивании флакона приливают 5 мл раствора тимола. Через 2 недели мочу центрифугируют для удаления слизи и незначительного количества мочевой кислоты. После такой обработки моча становится прозрачной и почти не имеет запаха.

Контрольный материал хранят при комнатной температуре. Срок годности - несколько лет. Слитая моча используется для контроля воспроизводимости.

Для контроля качества диагностических полосок используются контрольные растворы, имитирующие мочу. Способ приготовления: в мерную колбу на 500 мл с 200 мл дистиллированной воды добавляют 5 мл глюкозы (для инъекций внутривенно), 2 мл ацетона (ч, чда), 25 мл слитой человеческой сыворотки и 0,1 мл лизированной крови (к 0,1мл цельной крови добавляют 01 мл дистиллированной воды для лизиса эритроцитов). Тщательно перемешивают и доводят объем до метки физиологическим раствором. Используя 0,1 М НС1, величину рН доводят до 6,0. Контрольный раствор хранится в холодильнике не более одного месяца.

Контроль качества коагулологических исследований

Контроль качества коагулологических исследований имеет свои особенности, связанные, прежде всего, с характером методических принципов, которые применяются для исследования параметров свертывающей системы и фибринолиза и основаны, главным образом, на определении конечной точки образования фибрина, а также с видом используемых реактивов. Для контроля коагулологических исследований применяют:
Смешанную свежую плазму от большого количества доноров (не менее 20 человек).
Стандартную человеческую лиофилизированную плазму (пул) для калибровки.
Контрольную человеческую плазму с точным содержанием факторов свертывания (нормальным и патологическим).
Контрольную плазму с дефицитом индивидуальных факторов свертывания.
Контрольную плазму для контроля верхней и нижней границы терапевтической области при приеме антикоагулянтов.

В качестве основного контрольного материала используют слитую, только цитратную плазму с нормальным и пролонгированным временем свертывания. Способ приготовления слитой плазмы: свежую плазму, взятую с 3,8%-м раствором цитрата натрия, собирают от нескольких доноров, смешивают и разливают во флаконы. Быстро замораживают. Основное требование к плазме - отсутствие в ней следов гемолиза и эритроцитов.

Контрольную плазму каждый день размораживают и используют в начале работы и через каждые 20 проб. Рекомендуют использовать не менее одной порции плазмы с пролонгированным временем свертывания. Каждая проба и контрольная плазма исследуются параллельно. Если разница между параллелями больше 3 сек., то тест должен быть повторен со свежей пробой от пациента.

Контроль качества исследований мочи

Степень точности получаемых результатов исследований мочи в основном зависит от квалификации лаборанта, используемого оборудования, реактивов и метода исследования. Для получения правильных и воспроизводимых результатов исследования химического состава мочи используют контрольные материалы, близкие, по возможности, к образцам мочи пациентов, и контрольные мазки для контроля качества микроскопических исследований осадка мочи. В качестве контрольных материалов для контроля химического состава мочи используют: водные растворы веществ; слитую мочу с консервантами; искусственные растворы мочи с добавками веществ, исследуемых в моче.

На контрольных материалах проверяют методы, обычно применяемые в лаборатории для качественного и количественного исследования химического состава мочи. Водные растворы веществ с известным содержанием используются для контроля качества исследований химического состава мочи (например, раствор глюкозы, ацетона, альбумина). Для приготовления водных растворов используют дистиллированную воду, соответствующую ГОСТ 6709–72, и реактивы квалификации хч и чда. Водные растворы хранят в холодильнике в течение 1 месяца. Для контроля качества исследований химического состава мочи можно использовать слитую мочу, приготовленную в лаборатории.

К 1 л свежей человеческой мочи добавляют 2 г ЭДТА и при энергичном встряхивании и перемешивании флакона приливают 5 мл раствора тимола. Через 2 недели мочу центрифугируют для удаления слизи и незначительного количества мочевой кислоты. После такой обработки моча становится прозрачной и почти не имеет запаха.

Контрольный материал хранят при комнатной температуре. Срок годности - несколько лет. Слитая моча используется для контроля воспроизводимости. Для контроля качества диагностических полосок используются контрольные растворы, имитирующие мочу.

Способ приготовления: в мерную колбу на 500 мл с 200 мл дистиллированной воды добавляют 5 мл глюкозы (для инъекций в/в), 2 мл ацетона (ч, чдa), 25 мл слитой человеческой сыворотки и 0,1 мл лизированной крови (к 0,1 мл цельной крови добавляют 0,1 мл дистиллированной воды для лизиса эритроцитов). Тщательно перемешивают и доводят объем до метки физиологическим раствором. Используя 0,1 М НСl, величину рН доводят до 6,0. Контрольный раствор хранится в холодильнике не более одного месяца.

Оценка качества работы лаборанта

Оценка качества работы лаборанта должна быть частью программы внутрилабораторного контроля качества. Оценить технику работы лаборантов можно при помощи следующих методов:
Метод, использующий результаты внешней оценки качества.
Метод случайных проб.
Метод разведения проб.
Метод дублирования анализов.
Метод, использующий результаты внутрилабораторного контроля качества.

Если лаборант выполнил 20 или более анализов, то его работу оценить легко, если истинная величина проб известна. Среднеквадратическое отклонение лаборатории можно рассматривать как оценку способности производить правильные анализы каждым лаборантом при расчете средней всех стандартных отклонений для всех тестов. Эта средняя может быть названа комбинированным среднеквадратическим отклонением (KS).

Величину KS рассчитывают за определенный отрезок времени (полгода, год) для каждого лаборанта и дают грубую оценку аналитической способности каждого. Вначале откладываются результаты анализов контрольных материалов за определенный промежуток времени, идентифицируется каждый тест с именем лаборанта, который его выполнял. После истечения установленного срока готовятся оценочные листы для каждого лаборанта. На оценочном листе регистрируют название теста, полученный лаборантом результат, истинное значение и среднеквадратическое отклонение. Из этих величин рассчитывают разницу между истинной величиной и полученной лаборантом, и делят ее на среднеквадратическое отклонение, например: при исследовании гемоглобина крови лаборантом получено значение 163 г/л, X ср.=162 г/л; S=2, т.о. KS = (163-162)/2 = 0,5.

Чем ниже KS, тем лучше работа лаборанта. Данную величину можно использовать для ранжирования лаборантов по качеству работы: так, при KS:
0–0,5 - отлично;
0,5–1,0 - хорошо;
1,0–1,5 - удовлетворительно;
1,5–2,0 - плохо;
выше 2,0 - очень плохо.

Этот метод трудно применить в полностью автоматизированных лабораториях. Для сравнения качества работы лаборантов можно использовать результаты метода дублирования проб, метод разведения. Их недостатком является то, что их можно использовать только для оценки качества работы лаборантов, но не для ранжирования.

Автоматизация ведения внутилабораторного контроля качества

Ведение внутрилабораторного контроля качества в полном объеме для всех выполняемых в КДЛ исследований требует значительных затрат труда, времени и средств. Снижение этих затрат возможно только при автоматизации контроля качества с использованием персонального компьютера и программного обеспечения. Важно и то, что получаемые с помощью программы результаты обладают высокой достоверностью, т. к. уменьшается число ошибок, допускаемых при ручном ведении контроля. Единственное, что требуется от персонала КДЛ в качестве рутинной работы, - вводить в программу результаты измерений контрольного материала или проб пациентов.

Контроль работы приборов, оборудования и качества посуды

Применяемая в настоящее время широкая номенклатура лабораторных исследований требует использования самых разнообразных технических средств, и их перечень составляет десятки наименований. Комплекс организационно-технических мероприятий, позволяющих контролировать технические и метрологические характеристики выпускаемых изделий, осуществляется на основе Положения Государственной системы обеспечения единства измерений (ГСИ).

Измерительные приборы подлежат поверке в соответствии с ГОСТ 8002–71. В соответствии с руководством по метрологическому обеспечению средств измерений определен порядок и сроки поверки измерительных приборов в КДЛ. Измерительные приборы поверяются ведомственными метрологическими органами в соответствии с инструкцией, в которой указываются производимые операции и средства поверки. Поверке подлежат все технические и метрологические показатели, записанные в паспорте, прилагаемом к прибору. Работать на непроверенном приборе запрещается. Погрешность прибора входит в общую погрешность анализа. Погрешность анализа включает погрешности лаборанта, отбора пробы, дозирования, измерения.

В связи с тем, что поверочными средствами КДЛ не располагают, некоторые характеристики фотометрических абсорбциометров могут быть проверены с помощью контрольных светофильтров, входящих в комплект к прибору. Проверка может быть также осуществлена с помощью специально приготовленных растворов - жидких индикаторов, которые в определенной области спектра имеют постоянные спектральные характеристики. Жидкие индикаторы могут быть приготовлены непосредственно в КДЛ и позволяют проводить проверку точности измерений в различных областях спектра (от 300 до 550 нм). Пик абсорбции светофильтра должен находиться вблизи от пика абсорбции жидких индикаторов. Кроме того, приготовив соответствующие разведения данных растворов, можно проверить липидность данного прибора. Измерения проводятся в кювете с длиной оптического пути 10 мм.

Приготовление растворов по проверке спектральных характеристик фотометров

Сульфат меди в количестве 20 г растворить в 10 мл концентрированной серной кислоты, количественно перенести в мерную колбу на 100 мл, после достижения комнатной температуры довести объем до метки дистиллированной водой. Хранить в темной посуде. Сульфат кобальта аммония в количестве 14,481 г растворить в 10 мл концентрированной серной кислоты, перенести в мерную колбу на 100 мл, довести объем при комнатной температуре до метки дистиллированной водой. Хранить плотно закрытым в темной посуде. Хромат калия в количестве 40 мг растворить в 600 мл 0,05 Н раствора КОН в мерной колбе на 100 мл, довести объем до метки 0,05 Н раствором КОН.

В общую составляющую лабораторной погрешности входит погрешность дозирования. Поэтому совершенно особой проблемой является проверка применяемых дозирующих и мерных средств на точность показаний. Из практики известно, что около 30-40% всей мерной посуды отбраковывается ввиду ее погрешность мерного объема по следующей формуле:((исходный объем – полученный объем) / исходный объем) х 100%.

Результат, выраженный в %, не должен превышать: для 20 мкл - 3%, для 100–200 мкл - 1%, для 1 000–2 000 мкл - 0,3%. В каждой лаборатории необхоплохого качества. Оценка точности проводится на аналитических весах гравиметрическим способом: массу воды, составляющую объем дозирующего объекта, многократно (не менее 10 раз) взвешивают на аналитических весах. Переведя массовые единицы в объемные, рассчитывают димо разработать и внедрить программу контроля качества используемого оборудования, которая включает проверку и регистрацию состояния холодильников, водяных бань, термостатов, пипеток, таймеров, а также контроль качества дистиллированной воды (чистота, величина рН).

1

Настоящая статья посвящена практической реализации контроля стабильности результатов анализа в форме выборочного статистического контроля по альтернативному признаку в испытательных лабораториях нефтеперерабатывающих предприятий. Представлена схема выбора плана контроля и условие приемлемости результатов анализа, включенные в проект стандарта организации на данный метод. Показана реализация метода для контроля внутрилабораторной прецизионности и погрешности определения плотности на примере рабочих проб неэтилированного бензина и стандартных образцов плотности. По результатам выполнения плана контроля, включающего объем выборки, приемочное и браковочное числа, стабильность результатов анализа плотности признана удовлетворительной. Преимуществами изложенного метода являются простота, возможность сокращения трудовых затрат и затрат на приобретение реактивов. Внедрение проекта стандарта организации по контролю стабильности результатов анализа в форме выборочного статистического контроля позволит лабораториям экспериментально подтверждать техническую компетентность и выполнять одно из требований критериев аккредитации при оптимизации затрат на внутренний контроль качества испытаний.

выборочный статистический контроль

стабильность результатов

внутрилабораторная прецизионность

погрешность

1. Бутылин Е.В., Михайлова П.Г. Разработка лабораторной информационной системы качества нефтепродуктов // Успехи в химии и химической технологии. – 2001. – №1. – URL: http://e.lanbook.com/view/journal/166824/page4 (дата обращения: 21.10.2015).

2. ГОСТ Р 51105-97. Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Технические условия.

3. ГОСТ Р 51069-97 Нефть и нефтепродукты. Метод определения плотности, относительной плотности и плотности в градусах АРI ареометром.

4. ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий.

5. РМГ 76-2004 Внутренний контроль качества результатов количественного химического анализа.

6. Федорович Н.Н. Контроль процесса испытаний для подтверждения компетентности лабораторий // Известия высших учебных заведений. Пищевая технология. – 2010. – №1. – С. 66.

7. Федорович Н.Н., Федорович А.Н. Реализация методик выполнения испытаний нефтепродуктов // Фундаментальные исследования. – 2008. – № 7. – С. 69.

В настоящее время испытательные лаборатории могут гарантировать заказчику получение точных и надёжных данных только в случае прохождения данной лабораторией процедуры аккредитации в соответствии с Федеральным законом «Об аккредитации в национальной системе аккредитации».

Аккредитация лабораторий - метод определения их технической компетентности в определённых видах испытаний, измерений и калибровок. Она обеспечивает официальное признание лабораторий, облегчая клиентам поиск и выбор надёжных поставщиков услуг в испытаниях, измерениях и калибровках, удовлетворяющих их требованиям. Аккредитация лабораторий высоко оценивается на международном и национальном уровне как надёжный индикатор технической компетентности.

Ключевым требованием при аккредитации испытательных лабораторий является наличие и исполнение руководства по качеству. Подробные требования к системе менеджмента и исполнению этой системы - необходимые условия для нормальной работы аккредитованного лица, ведь именно указанный документ описывает все процедуры, обеспечивающие прослеживаемость и достоверность оценки. Система менеджмента лаборатории предусматривает требования к основному процессу - выполнению методик испытаний, и к процессам обеспечения ресурсами, анализа и измерений, а также выделяет обратную связь с потребителем .

При разработке и актуализации руководства по качеству испытательные лаборатории руководствуются требованиями стандарта ГОСТ Р 17025 .

В руководстве по качеству должно быть описание правил управления качеством результатов испытаний, в том числе правил планирования и анализа результатов контроля качества испытаний, которыми предусмотрен внутренний контроль качества испытаний.

Как показывает практика, проведение внутреннего контроля качества в испытательных лабораториях осуществляется в форме контроля стабильности результатов анализа с использованием контрольных карт Шухарта .

Мы предлагаем контроль стабильности результатов испытаний в испытательной лаборатории нефтеперерабатывающих предприятий проводить в форме выборочного статистического контроля (ВСК) по альтернативному признаку. Он позволяет осуществлять контроль погрешности и внутрилабораторной прецизионности результатов анализа. Данный метод прост в исполнении, выполняется с использованием результатов анализа рабочих проб, требует меньшего количества стандартных образцов, снижает общее количество испытаний, необходимых для контроля.

Нами разработан проект стандарта организации СТО «Внутрилабораторный контроль качества испытаний. Контроль стабильности результатов испытаний в форме выборочного статистического контроля внутрилабораторной прецизионности и погрешности результатов анализа» с учетом рекомендаций РМГ 76 .

План ВСК внутрилабораторной прецизионности и погрешности результатов анализа и его выполнение представлены на рис. 1 и 2.

Рис. 1. План выборочного статистического контроля внутрилабораторной прецизионности и погрешности результатов

В соответствии с проектом стандарта организации провели контроль стабильности результатов испытаний показателя плотности при 15 °C.

Для контроля внутрилабораторной прецизионности использовали результаты испытаний рабочих проб неэтилированного бензина марки Нормаль-80 по ГОСТ Р 51105 , для контроля погрешности - ГСО плотности нефти и нефтепродуктов.

Рис. 2. Реализация плана выборочного статистического контроля внутрилабораторной прецизионности и погрешности

Контроль стабильности результатов испытаний проводили в течение месяца. Объем контролируемой совокупности результатов анализа составил 90 рабочих проб. Предел приемлемого качества выбрали 6,5 %, т.к. он рекомендуется при анализе проб промышленного производства. На стадии внедрения в лаборатории ВСК использовали нормальный уровень контроля качества (нормальный контроль).

По представленным исходным данным выбрали параметры плана ВСК:

а) число контрольных процедур (объем контрольной выборки), необходимых для оценки качества результатов анализа партии рабочих проб, выполняемых в течение месяца, n = 13;

б) нормативы ВСК:

1) приемочное число h = 3;

2) браковочное число h′ = 4.

В соответствии с планом выборочного контроля из результатов испытаний плотности рабочих проб неэтилированного бензина марки Нормаль-80, полученных за месяц, выбрали случайным образом (используя таблицу случайных чисел) 13 результатов контрольных процедур, полученных по результатам контрольных измерений.

Для контроля внутрилабораторной прецизионности определили норматив контроля (предел внутрилабораторной прецизионности) Rл с учетом значения СКО внутрилабораторной прецизионности sRл. По данным предыдущих периодов sRл = 0,0001.

Значение норматива контроля Rл рассчитали по формуле

R л = 2,77 s R л, (1)

где s R л - значение СКО внутрилабораторной прецизионности (показатель внутрилабораторной прецизионности результатов анализа).

Каждый результат контрольной процедуры сравнили с нормативом контроля Rл. По результатам сравнения делали вывод о соответствии или несоответствии результата контрольной процедуры.

Результаты выборочного статистического контроля внутрилабораторной прецизионности с использованием рабочих проб неэтилированного бензина марки Нормаль-80 представлены в табл. 1.

В результате оценки 13 выборок при контроле внутрилабораторной прецизионности получили, что число несоответствующих результатов контрольных процедур, т.е. результатов контрольных процедур, которые выше значения норматива контроля, составляет h к = 3.

Полученное значение h к сравнили с приемочным числом h = 3.

Таблица 1

Результаты выборочного статистического контроля внутрилабораторной прецизионности с использованием рабочих проб

Контролируемый объект - неэтилированный бензин марки Нормаль-80

Определяемая характеристика - плотность при 15 °С, г/см3

Шифр пробы

Результаты контрольных измерений

Результат контрольной процедуры

Rк = Х1 - Х2 

Норматив контроля (предел внутрилабораторной прецизионности) Rл

Так как hк ≤ h (3 ≤ 3), то внутрилабораторную прецизионность результатов испытаний рабочих проб, полученных в течение контролируемого периода, считаем удовлетворительной.

При контроле погрешности за контролируемый период провели 13 испытаний объекта контроля, в качестве которого использовали Государственный стандартный образец плотности нефти и нефтепродуктов ГСО 8156-2002 индекс ПЛ-2 с аттестованным значением при 15 °С 730,5 кг/м3.

Результаты контрольных процедур Kк при контроле погрешности рассчитали по формуле

K к =Х ср ‒ С, (2)

где Хср - среднее арифметическое значение результатов параллельных определений характеристики образца для контроля; С - аттестованное значение характеристики образца для контроля.

Значение норматива контроля K при контроле погрешности определили по формуле

где ± Dл - значение характеристики погрешности результатов анализа, соответствующее аттестованному значению образца для контроля.

Абсолютная погрешность аттестованного значения используемого стандартного образца при Р = 0,95 составляет ±0,0003 г/см3.

Полученные результаты представлены в табл. 2.

В результате оценки 13 контрольных процедур при контроле погрешности получили, что число несоответствующих результатов контрольных процедур, т.е. результатов контрольных процедур, которые выше значения норматива контроля, составляет h к = 1.

Полученное значение hк сравнили с приемочным числом h = 3.

Так как hк ≤ h (1 ≤ 3), то погрешность результатов испытаний, проводимых в течение контролируемого периода, считаем удовлетворительной.

В случае неудовлетворительной внутрилабораторной прецизионности или погрешности результатов анализа выясняют и устраняют возможные причины, а затем может быть принято решение об установлении для последующей выборки контрольных процедур усиленного контроля качества с более жесткими нормативами контроля. Если внутрилабораторная прецизионность или погрешность результатов анализа при нормальном контроле в течение десяти последовательных контролируемых периодов признается удовлетворительной и суммарное количество несоответствующих результатов контрольных процедур в десяти выборках не превосходит соответствующего предельного числа, то переходят на ослабленный контроль. В рассмотренной ситуации число контрольных процедур уменьшается до 5.

Таблица 2

Результаты выборочного статистического контроля погрешности с использованием стандартного образца

НД на методику испытаний ГОСТ Р 51069

Определяемая характеристика - плотность при 15 °С, г/см 3

Аттестованное значение объекта контроля - 730,5 кг/м 3 (0,7305 г/см 3)

Номер анализа

Результаты контрольных определений

Результат контрольного измерения, Хср

Результаты контрольных процедур Kк, Kк = Хср - С

Норматив контроля, K

Отметка о несоответствующем результате контрольной процедуры

Таким образом, в работе показано, что предложенный метод по сравнению с контрольными картами Шухарта исключает дублирующие процедуры, что значительно снижает трудовые затраты и затраты на приобретение стандартных образцов. Внедрение разработанного проекта СТО в рамках действующей системы менеджмента в испытательной лаборатории нефтеперерабатывающего производства не представит трудностей и позволит лаборатории продемонстрировать оптимизированный подход к обеспечению качества результатов испытаний, которое учитывается при аккредитации лаборатории.

Рецензенты:

Ясьян Ю.П., д.т.н., профессор, зав. кафедрой технологии нефти и газа, ФГБОУ ВПО «Кубанский государственный технологический университет», г. Краснодар;

Боковикова Т.Н., д.т.н., профессор, профессор кафедры химии, метрологии и стандартизации, ФГБОУ ВПО «Кубанский государственный технологический университет», г. Краснодар.

Библиографическая ссылка

Федорович Н.Н., Федорович А.Н., Светловская А.Ю., Молчанова Я.М. ОПТИМИЗАЦИЯ ВНУТРИЛАБОРАТОРНОГО КОНТРОЛЯ КАЧЕСТВА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ // Фундаментальные исследования. – 2015. – № 11-3. – С. 511-515;
URL: http://fundamental-research.ru/ru/article/view?id=39450 (дата обращения: 24.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

- Контроль стабильности результатов анализа с применением контрольных карт. Особенности программной реализации

Введение

Настоящая статья продолжает рассмотрение особенностей программной реализации внутрилабораторного контроля (ВЛК) , которое было начато в продолжено в . Здесь предметом рассмотрения будет контроль стабильности результатов количественного химического анализа (КХА) с использованием контрольных карт (КК). Наряду с оперативным контролем, рассмотренным в , это - наиболее востребованная на практике разновидность ВЛК . Кроме того, именно контроль с использованием КК является для лабораторий наиболее сложным с методологической и объёмным с практической точки зрения. И поэтому именно КК побуждают лаборатории искать средства автоматизации при внедрении у себя процедур ВЛК.

Напомним, что, как и в предыдущих статьях, базовым документом, регламентирующим ВЛК, для нас является РМГ 76 . Дополнительно мы также будем ссылаться на стандарты серии 5725 , точнее на 6-й из них .

Методология КК

Карты Шухарта

Как средство контроля КК известны с начала прошлого века . Впервые они были предложены Шухартом в 1924 году.

В основе своей КК являются графическим средством статистического анализа изменчивости процессов. Как нормативные категории статистические методы описаны в стандартах серии ГОСТ Р 50779. В них, в частности, имеются и документы, регламентирующие КК . Напомним кратко некоторые основные положения этих документов.

Основным индикатором состояния процесса является наклон графика КУСУМ. Для обнаружения недопустимого наклона используются различные методы. Основным в является метод так называемых V -масок. В этом методе сумма накапливается непрерывно на всем протяжении построения КК. Не будем останавливаться здесь на этом методе, поскольку в ВЛК используются другой – с постоянными контрольными пределами. Коротко суть его заключается в следующем. КУСУМ накапливается не всегда, а только когда накапливаемая переменная выходит за некоторый порог. Кроме того, КУСУМ прерывается, когда её график пересекает нулевую линию (процесс в стабильном состоянии), либо когда её график пересекает соответствующий контрольный предел (стабильность процесса подвергается сомнению). В ВЛК в качестве накапливаемой переменной используется отклонение измеренного значения X изм от аттестованного значения X ат образца для контроля (ОК), которое, очевидно, может быть как положительным, так и отрицательным. Соответственно возникает два набора прерывающихся графиков КУСУМ: положительные суммы и отрицательные суммы


Рис 2

КУСУМ-карты в ВЛК являются индикатором систематических погрешностей. Действительно, результат i -го измерения составляет:

X изм, i = X ист + ? X сл, i + ? X сист,

где X ист – истинное измеряемое значение, принимаемое равным X ат, ? X сл, i – случайная i -я погрешность, ? X сист – постоянная систематическая погрешность. Тогда для КУСУМ по n точкам имеем:

Очевидно, что первый член Q сл, n , связанный со случайным разбросом, при возрастании n будет стремиться к нулю примерно как , тогда как второй член, связанный с систематической ошибкой, пропорционален n . И, значит, если бы график КУСУМ не прерывался, то рано или он пересёк бы один из контрольных пределов.

КК в ВЛК

В случае ВЛК объектами контроля являются МВИ, а в качестве контролируемых процессов выступают процессы выполнения измерений. При этом в качестве характеристик процесса выбираются переменные, характеризующие погрешность МВИ.

Если попытаться сопоставить РМГ76 и ГОСТы серии 50779, то можно утверждать, что в ВЛК используются, в общем, стандартные карты, а именно:

· R -карты – для КК повторяемости и внутрилабораторной прецизионности (далее прецизионности);

· карты скользящих размахов – для КК прецизионности в методе с использованием (одного) ОК;

· X -карты – для КК погрешности;

· КУСУМ-карты – для контроля систематической погрешности с использованием ОК.

В случае же отсутствия опорного (аттестованного) значения проблемы возникают и с контролем погрешности, поскольку нет возможности в чистом виде получить ряд, характеризующий систематическую составляющую этой погрешности, так что приходится использовать некие искусственные характеристики. В результате мы приходим к таким методам, как регламентированные в РМГ76 метод добавок, метод разбавления, метод добавок совместно с разбавлением и метод с другой (контрольной) МВИ. Методологические ограничения данных методов рассматривались в . Здесь добавим только, что поскольку для получения одного значения необходимо провести несколько измерений, случайный разброс характеристики увеличивается, что приводит к уменьшению вероятности обнаружения постоянного сдвига.

Второе следствие использования рабочих проб (или нескольких ОК) связано с тем, что в случае, когда погрешности МВИ зависят от измеряемого значения, для построения и корректной интерпретации КК необходимо устранить изменение от точки к точке контрольных пределов. Это достигается за счёт нормировки значений характеристики:

· на величину предела предупреждения (КК в приведённых единицах) – в общем случае;

· на измеренное значение (КК в относительных единицах) – в случае, когда контролируемый показатель пропорционален измеряемому значению.

Всё сказанное имеет следующие последствия для программной реализации КК для ВЛК .

1. Программа должна проверять допустимость погрешности аттестованного значения используемого ОК. Аналогичные проверки требуются для значений добавок, разбавлений и пр.

2. Сочетание всех возможных методов и нормировок приводит к необходимости программирования около 25 разновидностей КК. А если учесть дополнительные (допускаемые в РМГ76) возможности, например использование на одной КК контрольных значений, полученных различными методами (скажем с использованием ОК с добавками), то количество видов КК становится ещё больше. Программный код возрастает значительно, так как с точки зрения программирования КК отличаются наборами исходных данных, алгоритмами расчётов и проверок корректности, видами графического представления и особенно – отчётными формами. А при реализации в LIMS (Лабораторная Информационная Система) – это ещё и различные способы регистрации и подготовки образцов и обработки результатов испытаний.

3. Наличие различных нормировок КК требует корректного и рационального их применения. На практике пользователю бывает сложно учесть все нюансы. Типичный пример. Если используется метод с ОК, то даже при наличии зависимости показателей от измеряемого значения КК строятся в абсолютных единицах. Но при использовании нескольких ОК абсолютные единицы уже не пройдут: потребуется нормировка. Хотя и здесь, опять таки, возможны исключения, если все ОК имеют одинаковые X ат! Поэтому программа должна проверять корректность КК, что допустимо как на этапе конфигурирования контроля, так и в момент выполнения вычислений (именно так «поступает» программа Lab 5725X компании «Аврора-ИТ»). Второй пример. Для метода с ОК в контроле прецизионности рекомендуется строить КК скользящих размахов. Но если использовать сразу несколько ОК, то такая карта станет некорректной, потому что некоторые разности будут отслеживать не столько изменчивость измерений, сколько разность аттестованных значений. Эта ситуация также требует проверки. Упомянутая программа Lab 5725X использует около десятка подобных проверок, а также анализирует менее серьёзные проблемы, такие как, например, отсутствие погрешности аттестованного значения. В таких случаях КК считается корректной, но фиксируется предупреждение.

Специфика КХА

Контроль МВИ заключается в проверке статистической подконтрольности погрешностей измеряемых характеристик. Но применительно к КХИ здесь имеется ряд особенностей, требующих особого рассмотрения.

Во-первых, погрешность необходимо проверять не в одной точке (не для одного измеряемого значения), а во всём диапазоне измерений. Для этого необходимо, согласно РМГ76, для одной и той же характеристики строить несколько КК, например в начале, середине и конце диапазона (поддиапазона). А поскольку КК, как уже говорилось, принято строить парами: R -карта (КК преционности) + X -карта (КК погрешности), – то может легко оказаться, что на одну МВИ как объект регулирования будет назначено одновременно несколько КК. С одной стороны, это приводит к необходимости ведения в программе связанных (через МВИ) процессов. С другой, – возникает опасность перерегулирования контроля МВИ: случайные (ложные) тревоги будут возникать слишком часто, то на одной КК, то на другой. Особенно если принять во внимание дополнительные решающие правила. Поэтому в программе желательно иметь возможность настраивать перечень отслеживаемых нарушений. Хотя, вообще говоря, это, прежде всего, проблема пользовательского планирования, а не программы.

Во-вторых, существует близкая к описанной выше следующая проблема. Некоторые объекты регулирования (МВИ) имеют сразу несколько характеристик (измеряемых компонентов). Это, например, МВИ определения фракционного состава или масспектрометрии. Потенциально каждая из характеристик (количество которых порой составляет десятки) может подвергаться контролю. При этом вероятность перерегулирования возрастает многократно. Не говоря уже о том, что программирование (регистрация, расчёт, интерпретация, представление) таких связанных процессов требует значительных усилий, особенно в LIMS . Несмотря на то, что такое программирование в той или иной степени решается в программах для ВЛК, например в Lab 5725 X , последовательно и полно задача связанных КК, насколько известно автору, не решается нигде. И дело здесь связано не только со сложностью реализации, но и с потенциальной громоздкостью и плохой воспринимаемостью пользовательского интерфейса.

Контрольные пределы

Согласно РМГ76 для расчёта контрольных пределов используются внутрилабораторные показатели качества результатов измерений. Не касаясь способа их получения и представления, что рассмотрено в , а также будет обсуждаться в публикации по специальному эксперименту, рассмотрим здесь только следующую проблему.

Как уже говорилось, КК ориентированы либо на контроль статистической управляемости процесса, либо на гарантирование заявленных требований (приёмочные КК). Если попытаться соотнести это с РМГ 76, то можно утверждать, что здесь регламентируется, в первую очередь, контроль статистической управляемости, поскольку используются контрольные пределы, определённые по экспериментальным данным, полученным из специального эксперимента или из предыдущей КК.

Примечание. Расчётные показатели мы не учитываем, так согласно РМГ76 они являются ориентировочными и для целей контроля (принятия решений) не должны использоваться.

Что касается приёмочных (гарантирующих погрешности) КК, то потенциально к таковым можно было бы отнести КК с контрольными пределами, вычисленными на базе метрологических характеристик МВИ. Подобные КК в РМГ76 не регламентируются, но автору представляется вполне естественным, что во многих случаях лаборатории захотят вести именно такой контроль. Тем более что в примерах ГОСТ 5725 он имеется, а с точки зрения программирования его реализация очень проста: всё, что нужно, это использовать в чистом виде показатели из нормативной документации (НД) на МВИ (или расчётные формулы по РМГ76). Для примера – в Lab 5725 X эта возможность реализована через простое копирование метрологических характеристик в Протокол установленных показателей.

Оценивание показателей

В соответствии с РМГ76, в конце периода наблюдения (после накопления статистически значимого количества контрольных процедур) по результатам КК могут рассчитываться (оцениваться) новые показатели (характеристики) погрешности МВИ. При необходимости эти показатели оформляются в виде нового Протокола и используются в последующих КК.

Несмотря на кажущуюся простоту расчётов новых показателей по приведённым в РМГ76 формулам, они, в действительности, сопряжены с рядом затруднений.

1. Расчёт повторяемости не регламентируется. Это прямое следствие принятой (предписанной) в ГОСТ 5725 и РМГ61 гипотезы (модели), что на этапе аттестации МВИ она совершенствуется до такого уровня, при котором показатели повторяемости во всех лабораториях, соблюдающих регламент НД на МВИ, будут одинаковыми. Но на практике, видимо, следует ожидать и другую картину. По крайней мере, для старых МВИ, не проходивших аттестацию по РМГ61. И в этом случае расчёт показателя повторяемости становится уместным, с использованием формул, подобных рекомендуемым для показателя прецизионности.

2. Для расчёта показателя прецизионности в РМГ76 приводятся две равноправные формулы. Математическое ожидание у них одинаковое, но на конечной выборке они будут давать, понятно, несколько отличающиеся значения. Необходимо предоставить пользователю возможность выбора любой из них.

3. По РМГ76, при оценке систематической погрешности θ л ’ отн и её статистической значимости на фоне случайного разброса, то есть при расчёте критерия Стьюдента учитывается только СКО прецизионности? C ’ л. Это означает, что при достаточно большом количестве используемых результатов даже незначительные систематические сдвиги могут быть «выловлены» (станут статистически значимыми). А это приводит, в соответствии с РМГ76, к необходимости введения поправок в МВИ или установления несимметричных показателей погрешности. Такое положение нецелесообразно во многих случаях, например, если? л ’ отн меньше регламентированного в НД на МВИ округления.

Заметим, что в аналогичных формулах в Приложении В в РМГ76 при расчёте критерия Стьюдента наряду с? C ’ л учитывается погрешность аттестованного значения ОК. Это гарантирует, что? л ’ отн по крайней мере меньше этого значения «выловлено» не будет. Можно распространить такой подход и на оценки по КК. А «развивая», можно дополнить его введением и других стабилизирующих факторов, учитывающих, в частности, округление. Или же можно попытаться использовать «компенсацию» систематической погрешности за счёт искусственного увеличения? C ’ л.

Примечание 1 . Разумеется, все эти приёмы попадают в разряд нерегламентированных. Но на взгляд автора, без них обойтись трудно.

Примечание 2 . К сожалению, проблемы округления никак не рассматриваются в НД, регламентирующую КК. Но для КХА, где округления часто достаточно велики, это представляется весьма актуальным. Как минимум, в этом случае присутствует нарушение (за счёт дискретности) нормального распределения. Или вот: как трактовать решающее правило «шесть убывающих точек подряд»? Округления уравняют некоторые значения, так что может быть лучше говорить «шесть монотонных (не возрастающих) точек подряд»?

4. И, наконец, самая большая проблема: что делать, если имеется зависимость персчитываемого показателя от измеряемого значения? Так, даже в простейшем случае линейной зависимости?(X ) = A 1 + A 2 ?X при пересчёте по одной КК непонятно, что корректировать: A 1 , A 2 или, скажем, наклон. А в случае, если используется несколько КК, на повестку дня вообще может встать необходимость регрессионного анализа. В настоящее время, видимо, никакое программное решение полностью автоматизировать пересчёт показателей не сможет, ограничиваясь проверкой корректности расчёта (он допускается лишь в некоторых случаях) и предоставлением результатов, полученных при прямом следовании формулам, оставляя трактовку и использование этих результатов на усмотрение пользователя.

Регистрация проб

Данный раздел актуален, в первую очередь, для реализации ВЛК в LIMS (лабораторно-информационных системах) , где при регистрации проб необходимо использовать объекты и функции соответствующих модулей. Для калькуляторов же ВЛК имеет значение, пожалуй, лишь определение частоты контроля по соответствующим формулам РМГ76 и составление графика контрольных процедур.

· конфигурирование процесса;

· планирование очередного периода накопления;

· регулярные контрольные испытания;

· оценка показателей и выполнение корректирующих мероприятий по оценкам;

· завершение процесса.


Рис 3

В отличие от оперативного и других видов контроля, контроль стабильности с использованием КК не требует предварительного проведения оперативного контроля повторяемости для каждого измерения. Это несколько упрощает алгоритмы. На для примера показана схема алгоритма контроля погрешности с использованием ОК.

Рис 4 . Алгоритм контроля стабильности с использованием КК.
Контроль погрешности с применение ОК.

Алгоритмы для других видов КК принципиально не будут отличаться от изображённого, за исключением следующего:

1. Вместо подготовки ОК будет фигурировать подготовка рабочей пробы.

2. К основному образцу добавятся дополнительные образцы: с добавкой, разбавленный, испытываемый по контрольной МВИ.

3. Для соответствующих образцов добавятся процедуры введения добавки или разбавления.

4. В большинстве случаев оценка показателей должна быть исключена как не регламентированная.

Заметим, что представленная схема допускает дальнейшую детализацию. Так, например, проверка корректности расчёта подразумевает проверку погрешности аттестованного значения, проверку достаточности добавки или разбавления, проверку выполнения предыдущих корректирующих мероприятий и пр., а подготовка образцов может включать регистрацию и назначение проб конкретным испытателям.

Программная реализация

Как и другие виды ВЛК, программная поддержка методов контроля с применением КК может быть реализована в различных вариантах: калькулятор ВЛК, автономная программа с БД, модуль в лабораторно-информационной системе (LIMS) (см. ). Но на практике существует очень мало таких реализаций: по мнению автора, их – не больше двух (не считая варианты Lab 5725 ). И это не пренебрежение к подобному программированию процедур РМГ76. Ведь аналогичных программ поддержки КК в медицине автору, даже при беглом поиске, удалось найти более 6.

Здесь можно сказать следующее. С одной стороны, именно КК стимулируют программную автоматизацию ВЛК. Но, в силу своей обширности в РМГ76, они же и «губят» эту автоматизацию. В отличие от ситуации в медицине, где ОСТ 91500 или аналогичные документы настолько просты, что запрограммированы многократно.

Возвращаясь к РМГ76, в качестве иллюстрации его программной поддержки на показан интерфейс ввода результатов для построения КК в программе Lab 5725 X , а на – полученные по этим данным КК.


Рис 5


Рис 6

Заключение

Реализация контроля с использованием КК – не самая простая тема в ВЛК. Но это – основной вид контроля, поскольку он наиболее систематичен и результативен. Так что без его программной поддержки любая программа ВЛК будет несостоятельна.

Такая программная поддержка, как пытался показать автор выше, сопряжена с большими трудностями методологического и практического характера. При её реализации необходимо учитывать много особенностей, в противном случае пользователи программы начнут на практике сталкиваться с различными проблемами, включая получение «странных» результатов или выход в тупиковые ситуаций. Немалое число таких «странностей» автор обнаружил именно как «пользователь» (экспериментально, то есть при тестировании программы).

Второе, на что следует обращать внимание, – при создании программной поддержки внутрилабораторного контроля (ВЛК) необходимо тщательно продумывать пользовательский интерфейс, исходя, в первую очередь, не из математики, а из последовательности выполняемых пользователем операций. Внутрилабораторный контроль (ВЛК) с использованием КК, это не отдельные расчёты, а длительные процессы с упорядоченными последовательностями различных действий и вычислений.

И наконец. Воплощение в программе всех КК, регламентированных в РМГ76, неизбежно приводит к сложным и громоздким интерфейсам. На этом пути нетрудно потерять из виду одну из главных задач автоматизации – облегчение жизни пользователя. Снимая проблемы трактовки и использования нормативных документов НД, можно создать не менее трудные проблемы работы с программой. Один из возможных подходов к преодолению такого рода трудностей может заключаться в сознательном ограничении полноты программы с одновременной «пропагандой» среди пользователей разумной умеренности при планировании ВЛК. Именно для этого в статье рассматривались казалось бы не связанные с ВЛК вопросы перерегулирования процессов, ограниченности методов контроля без применения ОК и др.

Принятые сокращения

ВЛК

внутрилабораторный контроль

КК

контрольная карта

КУСУМ

кумулятивная сумма

КХА

количественный химический анализ

МВИ

методики выполнения измерений

НД

нормативная документация

ОК

образец для контроля

СКО

среднеквадратическое отклонение

LIMS

Laboratory Information Management Systems (Лабораторная Информационная Система , ЛИС , ЛИМС )

Литература

1. И.В.Куцевич, Аврора-ИТ «Специализированное программное обеспечение для автоматизации процедур внутрилабораторного контроля качества результатов количественного химического анализа», Современная лабораторная практика, №3, 2008 г., стр. 37–46.

2. И.В.Куцевич, Аврора ИТ, «Оперативный контроль процедуры анализа. Особенности программной реализации», Современная лабораторная практика, №1 (5), 2009 г., стр. 22–36.

3. «РМГ 76-2004 Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа», Москва, Издательство стандартов, 2004 г.

4. «ГОСТ Р ИСО 5725-6–2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике», ГОССТАНДАРТ РОССИИ, Москва, 2002.

5. Walter A Shewhart, «Economic Control of Quality of Quality of Manufactured Product», Van Nostrand, New York, 1931 г.

6. «ГОСТ Р 50779.40–96 Статистические методы. Контрольные карты. Общее руководство и введение».

7. «ГОСТ Р 50779.41–96 Статистические методы. Контрольные карты средних арифметических с предупреждающими границами».

8. «ГОСТ Р 50779.42–99 Статистические методы. Контрольные карты Шухарта».

9. «ГОСТ Р 50779.45–2002 Статистические методы. Контрольные карты кумулятивных сумм. Основные положения».

10. «ОСТ 91500.13.0001-2003 Правила проведения внутрилабораторного контроля качества количественных методов клинических лабораторных исследований с использованием контрольных материалов».

11. Westgard JO, Barry PL, Hunt MR, Groth T. «A multi-rule Shewhart chart for quality control in clinical chemistry». Clin Chem 1981;27:493-501.

12. РМГ 61-2003 Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки.


Количество показов: 43950
Автор: Игорь Викторович Куцевич, ЗАО «АВРОРА-ИТ»
Заголовок: Программа для внутрилабораторного контроля (ВЛК)
Ключевые слова: контрольные карты шухарта, ВЛК, КХА процедуры внутреннего контроля качества, контроль стабильности результатов программа для автоматизации, компьютеризация лабораторий, Аврора ИТ
Описание: Программа для внутрилабораторного контроля (ВЛК) Аврора ИТ 1

В статье систематизированы аспекты значимости внутрилабораторного контроля качества результатов испытаний, необходимые для обеспечения качества и повышения конкурентных преимуществ лаборатории и всей организации. Выполнен анализ факторов, условий и форм внутреннего контроля качества результатов испытаний. Обоснована необходимость применения внутрилабораторного контроля качества в аналитической практике специализированной лаборатории обеспечения государственного экологического надзора. Приведены результаты анализа форм контроля стабильности результатов измерений, применяемые в лабораторной практике экослужбы Оренбургской области. Даны рекомендации по проведению периодической проверки подконтрольности процедуры выполнения анализа с учетом доступности для лабораторий образцов контроля и стабильности их свойств. Оперативный контроль рекомендовано проводить как с применением образцов для контроля, так и методом добавок. Для контроля стабильности результатов испытаний рекомендовано применение контрольных карт Шухарта.

аналитические исследования

внутренний контроль качества

испытательные лаборатории

качество результатов испытаний

оперативный контроль

образцы для контроля

метод добавок

1. ГОСТ ИСО/МЭК 17025-2009. Общие требования к компетентности испытательных и калибровочных лабораторий. Межгосударственный стандарт. Общие требования к компетентности испытательных и калибровочных лабораторий (переиздание с поправкой: последние изм. от 18.10.2016) [Электронный ресурс] – Режим доступа: http://www.internet-law.ru/gosts/gost/50848. – 12.02.2017.

2. ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Ч. 6. Использование значений точности на практике. – Введ. 2002-11-01. – М. : Стандартинформ, 2009 – 51 с.

3. РМГ 76-2014. Внутренний контроль качества результатов количественного химического анализа. Рекомендации по межгосударственной стандартизации. – Введ. 2016-01-01. – М. : Стандартинформ, 2015. – 116 с.

4. Третьяк Л.Н. Внутренний контроль качества в аналитических и испытательных лабораториях: учебное пособие / Третьяк Л.Н., М.Ж. Кизатова, М.Б. Ребезов и др. – Алматы: ИП Аширбаев, 2016. – 208 с.

5. Третьяк Л.Н. Внутренний контроль качества в аналитических и испытательных лабораториях / Третьяк Л.Н., М.Ж. Кизатова, М.Б. Ребезов и др. // Международный журнал экспериментального образования, 2016. № 7-0, С. 187-188.

Как известно, основным результатом деятельности любой лаборатории являются полученные результаты измерений (испытаний, анализа). Причем высокое качество проведенных аналитических исследований во многом позволяет обеспечить высокий рейтинг этих лабораторий, конкурентоспособность и уровень доверия к их деятельности.

На качество получаемых результатов при аналитических исследованиях загрязнения окружающей среды оказывает влияние ряд факторов, которые достаточно хорошо изучены. В ГОСТ ИСО/МЭК 17025-2009 , регламентирующим требования к компетентности испытательных и аналитических лабораторий, качество внутрилабораторного контроля рассматривается как основной фактор, подтверждающий способность лаборатории выполнять исследования на должном уровне. В методическом пособии систематизированы данные о показателях качества измерений (анализа, испытаний, контроля). Методологические аспекты этой проблемы кратко изложены в публикации .

Качество получаемых результатов - комплексный показатель, определяемый их достоверностью, точностью, правильностью, сходимостью и воспроизводимостью. В свою очередь, точность определяется погрешностью (неопределенностью) измерений результатов (методов) количественного химического анализа (КХА), используемых для контроля за загрязнением окружающей среды.

В лаборатории, претендующей на высокое качество получаемых результатов, необходимо не только контролировать соблюдение необходимых условий, т.е. наличие факторов, требуемых для проведения КХА на соответствующем уровне, но и проведение комплекса мероприятий по внутреннему и внешнему контролю качества. При этом присутствие в экологических лабораториях факторов контроля (рис. 1) должно демонстрировать наличие необходимых условий обеспечения его качества. Однако для полной уверенности требуется применение управляющих действий по улучшению качества получаемых результатов, которые должны проводиться системно. Согласно ГОСТ ИСО/МЭК 17025-2009 для контроля достоверности проведенных измерений испытательная лаборатория должна располагать процедурами управления качеством. При этом контроль должен планироваться, а полученные результаты анализироваться. Поэтому внутренний контроль качества (ВКК) в аналитических и испытательных лабораториях представляет собой необходимый элемент «системы качества» - механизм управления качеством исследований. ВКК должен быть направлен на обеспечение необходимой точности результатов текущего анализа и экспериментального подтверждения лабораторией своей технической компетентности.

Рис. 1. Факторы измерений (испытаний, контроля), требуемые для обеспечения необходимых условий качества получаемых результатов

Рис. 2. Формы внутрилабораторного контроля качества результатов измерений

Формы ВКК в зависимости от целей и наличия необходимых условий различаются. Как правило, ВКК результатов измерений (испытаний) в лаборатории осуществляется в формах, представленных на рис. 2.

Специфика КХА в химико-аналитических лабораториях экологических служб связана с обязательных применением стандартных образцов (СО) и аттестованных смесей (АС). Известно, что различные методики, применяемые в экологических лабораториях, могут давать различные результаты для одного и того же СО, поэтому контроль качества должен строится c учетом этого обстоятельства. ВКК может включать в себя регулярное использование аттестованных стандартных образцов (АСО) и/или проводится с использованием СО.

Регламентированная в ГОСТ Р ИСО 5725-6-2002 процедура повышения точности измерений также предусматривает применение СО, которые в этом нормативном документе получили название «стандартный образец лаборатории» Это СО, приготовленный лабораторией, или просто «стандартный образец» (в этом случае не обсуждается, откуда берется этот СО). При наличии СО можно контролировать как различные показатели прецизионности, так и правильность исследований. Если СО не удается приготовить (например, из-за неустранимой нестабильности исследуемого материала), то можно контролировать повторяемость (сходимость) и, во многих случаях, промежуточную прецизионность измерений.

ГБУ «Экослужба Оренбургской области» аккредитовано на техническую компетентность и независимость в области проведения КХА и измерений показателей состава и свойств объектов окружающей и производственной среды. Получаемые в ГБУ «Экослужба Оренбургской области» результаты анализа (испытаний) предназначены для обеспечения контролирующих структур достоверной аналитической информацией о состоянии окружающей среды на территории Оренбургской области.

Эта информация необходима для осуществления государственного экологического надзора, направленного на выполнение функций управления охраной окружающей среды на объектах природопользователей; контроля условий проведения анализов (температура, влажность, давление и концентрация вредных веществ в воздухе рабочей зоны) и осуществления иных видов деятельности, не запрещенных законодательством РФ и соответствующих целям деятельности ГБУ «Экослужба Оренбургской области».

Оренбургская спецлаборатория обеспечения госэконадзора совместно с метрологической службой входит в состав ГБУ «Экослужба Оренбургской области», выполняя при этом ряд функций (таблица). В структуру спецлаборатории входят отделы: по контролю за выбросами в атмосферу, по контролю за загрязнением водных ресурсов, по контролю за загрязнением почв и методико-метрологический отдел. Анализ условий (факторов) контроля, приведенных на рис. 1, показал, что в Оренбургской спецлаборатории обеспечения госэконадзора эти условия соблюдаются в обязательном порядке, что говорит о соответствующем уровне обеспечении качества результатов анализа.

Функции подразделений спецлаборатории обеспечения госэконадзора (фрагмент)

Наименование отдела

Функции отдела

Отдел по контролю за загрязнением водных ресурсов

1) отбор проб и проведение КХА проб сточной, сточной очищенной, природной поверхностной,

2) построение градуировочных графиков и проверка стабильности градуировочных характеристик.

Методико-метрологический отдел

1) управление системой менеджмента качества, (функционирование и совершенствование);

2) разработка внутренних документов, регламентирующих деятельность

3) актуализация документов спецлаборатории обеспечения госэконадзора;

4) подготовка и сдача СИ в государственную поверку;

5) подготовка ИО к аттестации;

6) ведение картотек учета химических реактивов, СИ, ИО и вспомогательного оборудования (ВО), журналов учета НД, государственных стандартных образцов (ГСО), СД и т.д.;

7) проверка пригодности химических реактивов с просроченным действием по результатам ВК точности измерений;

8) внедрение совместно со специалистами отделов новых методик измерений, СИ;

9) оформление актов внедрения МИ по результатам ВОК точности контрольных измерений;

10) подготовка шифрованных проб для проверки ведомственных лабо-раторий предприятий - природопользователей и оформление актов межлабораторного контроля;

11) формирование и согласование графиков поверки СИ, аттестации ИО в ФБУ «Оренбургский ЦСМ»;

12) разработка методик приготовления АС, установление их метрологических характеристик, оформление свидетельств на АС.

В Руководстве по качеству спецлаборатории предусмотрено использование в своей работе методик, допущенных к применению, и (или) методик, оценка пригодности которых проведена в установленном порядке. К числу таких относят: методики, регламентированные стандартами (ГОСТ, ГОСТ Р), аттестованные государственными научными метрологическими центрами Росстандарта в соответствии с требованиями ГОСТ Р 8.563; внесенные в «Государственный реестр методик КХА и оценки состояния объектов окружающей среды», допущенных для государственного экологического контроля и мониторинга (ПНД Ф); внесенные в перечень методик измерений концентраций загрязняющих веществ в выбросах промышленных предприятий, допущенных к применению Министерством природных ресурсов России; внесенные в «Федеральный перечень методик выполнения измерений, допущенных к применению при выполнении работ в области мониторинга загрязнения окружающей природной среды» (РД 52.18.595-96).

Применительно к спецлаборатории основную проблему составляет многообразие анализируемых объектов и определяемых в них компонентов, с одной стороны, и эпизодичность проведения контроля этих объектов - с другой стороны. Кроме этого в лаборатории отсутствуют стабильные во времени и по составу пробы. Для подобных условий РМГ 76-2014 рекомендует контроль стабильности результатов анализа (измерений) проводить в форме периодической проверки подконтрольности процедуры выполнения анализа согласно утвержденному графику. Причем, периодическую проверку подконтрольности процедуры выполнения анализа необходимо проводит на основе специально планируемого для каждого контролируемого периода эксперимента.

Проверка подконтрольности процедуры выполнения анализа предусматривает проверку соответствия статистических оценок характеристик внутрилабораторной прецизионности и систематической погрешности лаборатории (правильности), полученных на основе оценки качества ограниченной совокупности результатов контрольных измерений, значениям, установленным при реализации конкретной методики в лаборатории. При реализации контроля данной формы устанавливают контролируемый период, в течение которого должна проводится проверка подконтрольности процедуры выполнения анализа.

Периодическую проверку подконтрольности процедуры выполнения анализа в спецлаборатории проводят на основе внутрилабораторного оперативного контроля. При инспекционном контроле было установлено, что в отделе по контролю за загрязнением водных ресурсов, согласно рекомендациям РМГ 76-2014 , оперативный контроль проводился в равном соотношении как с применением образцов контроля (ОК), так и методом добавок.

Известно, что применение ОК - наиболее предпочтительный способ контроля, т.к. этот способ позволяет исполнителю более полно оценить выполнение всей процедуры анализа. Однако в настоящее время при экологическом мониторинге, как отмечалось выше, все больше испытывается нехватка СО. Мониторинг потребности в СО, проведенный в 2010-2015 годах, показал, что в России отсутствует более 2500 типов СО, необходимых для метрологического обеспечения измерений.

Поэтому допускается использование только метода добавок, если установлено (например, на основе архивных данных показателей точности результатов анализа при реализации методики в лаборатории) незначимость постоянной составляющей систематической погрешности лаборатории на фоне характеристики внутрилабораторной прецизионности.

При очередной процедуре подтверждения компетентности на соответствие критериям аккредитации спецлаборатории экспертом, неоднократно участвующим в инспекционном контроле, было рекомендовано отделу по контролю за загрязнением водных ресурсов перейти на метод добавок. Исключением является определение сухого остатка, для которого единственно возможным методом для контроля может служить метод разбавления. Причем специфичность проведения испытаний отдела по контролю за выбросами в атмосферу (использование СО с аттестованными значениями (ампула, баллон)) и отдела по контролю за загрязнением почв (используются СО почв с аттестованными значениями (навеска)) не дают такую возможность, и поэтому метод с использованием ОК в этих случаях представляется единственно возможным.

Целью метода добавок является однозначное и количественное сопоставление анализируемого компонента и аналитического сигнала. Метод широко применяется при аттестации методик измерений и (или) при межлабораторных экспериментах (анализах). Применение метода добавок помогает свести к минимуму ошибку определения на основе уменьшения колебания ионной силы в анализируемых пробах, например, методом стандартной добавки. Но применительно к контролируемым в лаборатории отдела по контролю за загрязнением водных ресурсов объектам метод добавок практически исключает возможность проведения периодической проверки подконтрольности процедуры выполнения анализа. Это связано с необходимостью проведения периодической проверки подконтрольности, как рекомендовано в РМГ 76-2014 путем анализа результатов не менее 5-ти проб с одинаковой концентрацией. Однако эта процедура предполагает проведение анализа в двух параллелях на предположительно идентичных пробах. Для лаборатории в силу специфичности контролируемых показателей такое количество результатов не может быть реализуемо на практике, поскольку пробы природной, сточной или поверхностной вод с одинаковыми концентрациями встречаются достаточно редко. Поэтому, чтобы набрать пять и более проб, необходим длительный период, в течение которого, чаще всего, результаты первых проб становятся не актуальными. По этой причине реализация процедуры может быть проведена со значительным опозданием, что влечет за собой соответствующие замечания от руководства и органов аккредитации. Этот факт исключает применение для лаборатории метода добавок при проведении контроля стабильности результатов анализа (измерений) в форме периодической проверки подконтрольности процедуры.

Таким образом, качество проведенных аналитических исследований во многом определяет высокий рейтинг экологических испытательных лабораторий, их конкурентоспособность и уровень доверия к ним. Различные формы ВКК, применяемые в зависимости от целей и наличия необходимых условий, позволяют лабораториям обеспечивать требуемый уровень качества аналитических исследований.

Анализ форм контроля стабильности результатов измерений в лабораторной практике ГБУ «Экослужба Оренбургской области» показал, что наибольшее распространение получила форма периодической проверки подконтрольности процедуры результатов анализа. При этом применяются образцы для контроля и метод добавок.

Проведенный в отделе по контролю за загрязнением водных ресурсов анализ результатов оперативного контроля, полученных за последние пять лет (период осуществления только метода добавок), позволил рекомендовать для осуществления периодической проверки подконтрольности процедуры выполнения анализа оперативный контроль как с применением образцов для контроля, так и с методом добавок. Для контроля стабильности получаемых результатов измерений рекомендуем применение контрольных карт Шухарта.

Библиографическая ссылка

Иванова Л.С. ВНУТРИЛАБОРАТОРНЫЙ КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ В ПРАКТИКЕ ЭКОЛОГИЧЕСКИХ ИСПЫТАТЕЛЬНЫХ ЛАБОРАТОРИЙ // Международный студенческий научный вестник. – 2017. – № 4-4.;
URL: http://eduherald.ru/ru/article/view?id=17419 (дата обращения: 24.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»