Другие опыты с медью. Опыты с медной проволокой. Веселые химические опыты дома Опыт с медным купоросом и водой


Перекись водорода, а именно она лежит в основе нашего опыта, — очень неустойчивое соединение. Вещество, состоящее из двух атомов водорода и двух атомов кислорода, разлагается на кислород и воду даже при отсутствии каких-либо внешних стимулов. Однако процесс этот происходит очень медленно. Чтобы значительно ускорить его, достаточно добавить небольшое количество катализатора. Едва заметные следы присутствия меди, железа, марганца и даже ионов этих металлов способны запустить бурную реакцию разложения.

1. Налейте в пластиковую бутылку 200 мл 3%-ного раствора перекиси водорода. Такой раствор продают в аптеке в качестве антисептического средства. Вместо перекиси можно взять отбеливатель — их тоже готовят на основе H2O2.

Пероксид водорода (так иначе называют перекись) опасен для живых существ. Чтобы разложить H2O2 на кислород и воду, применяется фермент под названием «каталаза». Каталаза содержится почти во всех живых организмах, в том числе в дрожжах, которые мы используем в нашем опыте.


2. Добавьте пищевой краситель. Лучше использовать именно пищевые краски — не потому, что мы собираемся есть пену (это в любом случае не полезно), но потому, что в них точно не содержится катализаторов разложения перекиси водорода.

Перекись водорода — жидкость с плотностью 1,4 г/см 3 . Выделяющийся при ее разложении кислород — газ, один грамм которого занимает целых 700 см³.


3. Долейте моющее средство. Лучше всего подходят средства для мытья посуды. Объем — примерно половина от объема перекиси, то есть 100 мл.

Конечно, для опытов мы используем всего лишь 3%-ный раствор перекиси водорода, однако и этого достаточно, чтобы при ее разложении выделился газ в объеме гораздо больше исходного.


4. Разведите дрожжи в теплой воде, используя для этого отдельный стаканчик. Сделать это не так просто — дрожжи будут склеиваться комками. Нужно терпеливо размешать в 50 мл воды столовую ложку дрожжей, а затем дать им постоять пять минут. Решительно залейте дрожжевой раствор в бутылку с перекисью водорода и приготовьтесь наблюдать. Если повезет, реакция пойдет столь интенсивно, что пена буквально выпрыгнет из бутылки.

Чтобы увидеть выделившийся кислород, мы ловим его в мыльные пузыри. Для этого добавляем в раствор перекиси водорода пенящееся средство для мытья посуды.

Взаимодействие металлов с солями

Активные металлы вытесняют из солей менее активные (металлы расположены в порядке убывания активности в ряду напряжений).

Проведем опыт с раствором сульфата двухвалентной меди CuSO 4 . В одну колбу с раствором положим кусочки цинка Zn, в другую – стальные кнопки (сталь – сплав на основе железа Fe). Что произойдет через несколько часов? Растворы изменили цвет — значит, сульфата меди там больше не осталось. Активные металлы ‑ цинк и железо заместили медь в сульфате и образовали соли. Цинк и железо окислились, а медь восстановилась.

CuSO 4 + Zn = Zn SO 4 + Cu

CuSO 4 + Fe = Fe SO 4 + Cu

В одной колбе медь выделилась на кнопках, в другой – на кусочках цинка. В колбах были разные металлы, поэтому и осадок меди выглядит по-разному. На цинке медь выделилась в виде рыхлой бурой массы. На железных кнопках осадок меди ‑ более плотный, розового цвета.

Оборудование: колбы.

Техника безопасности . Необходимо осторожное обращение с солями меди. Соли меди в высоких концентрациях – ядовиты. Требуют соблюдения правил работы с ядовитыми веществами. Остерегаться попадания солей меди на кожу и слизистые оболочки.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Взаимодействие хлорида олова (II ) с цинком («Оловянный ежик»)

Более активные металлы могут замещать менее активные металлы из растворов их солей. В стакан нальем раствор хлорида олова (II), в раствор поместим цинковую пластинку. Через некоторое время пластинка покрывается красивым «пушистым» налетом олова. Произошло восстановление олова из раствора его соли более активным металлом — цинком:

SnCl 2 + Zn = Sn + ZnCl 2

Оборудование: стакан химический, стеклянная палочка.

Техника безопасности. Опыт безопасен.

Постановка опыта и текст – к.п.н. Павел Беспалов.

Демонстрация свойств сплава Вуда.

Сплав Вуда состоит из четырех компонентов. Он содержит 50 % висмута, 25 % свинца, 12,5 % олова и 12,5 % кадмия. Гранулы сплава опустим в горячую воду. Он переходит в жидкое состояние. Это легкоплавкий сплав. Температура плавления сплава около +70 °С. Между тем как температура плавления олова +232 °С, кадмия +321 °С, висмута +271 °С, свинца +327 °С. Температура плавления сплава отличается от температур плавления металлов, входящих в его состав.

Оборудование: стакан химический, штатив, горелка, пинцет.

Техника безопасности. Соблюдать правила обращения с нагревательными приборами.

Постановка опыта и текст – к.п.н. Павел Беспалов.

Платина – катализатор горения водорода

При обычной температуре водород очень редко вступает в химические реакции. Не реагирует водород и с кислородом. Но если направить струю водорода на мелко раздробленную платину, то водород загорается. Это свойство платины использовали в так называемом «водородном огниве Дёберейнера», служившем для получения огня. Получим водород в аппарате Кирюшкина, который по принципу действия схож с аппаратом Киппа. Проверим водород на чистоту. Для этого заполним пробирку выделяющимся водородом и поднесем пробирку к пламени горелки. Спокойный хлопок указывает на чистоту выделяющегося водорода. Пинцетом возьмем немного платинированного асбеста (асбеста с нанесенной мелко раздробленной платиной). Направим струю водорода на платинированный асбест. Асбест раскаляется, и водород загорается.

2Н 2 + О 2 = 2Н 2 О

Оборудование: аппарат Кирюшкина, пробирка, пинцет, горелка.

Техника безопасности. Соблюдать правила работы с горючими газами. Использовать водород можно только после проверки на чистоту.

Постановка опыта и текст – к.п.н. Павел Беспалов.

Самовоспламенение никеля на воздухе

Никель — это прочный, устойчивый к коррозии металл, который не изменяется под действием кислорода воздуха и влаги. Никелем покрывают детали приборов и машин для придания декоративного вида и защиты от коррозии. Но измельченные металлы, в том числе и никель, по своим свойствам отличаются от металлов, находящихся в монолитном виде. Выделим никель из сплава никель-алюминий, поместив порошок сплава в раствор щелочи.

Алюминий активно реагирует со щелочью, растворяясь в ней, реакция идет с выделением водорода. Для увеличения скорости растворения алюминия нагреваем раствор. Когда реакция закончится, и весь алюминий перейдет в раствор, промоем полученную крошку никеля сначала водой, а затем этиловым спиртом — для удаления остатков влаги. Извлечем немного никелевой крошки из спирта на фильтровальную бумагу. Когда спирт испаряется, никель начинает реагировать с кислородом воздуха, постепенно разогревается и сгорает с образованием оксида никеля.

2 Ni + O 2 = 2 NiO

Подобными свойствами обладает и мелкораздробленное железо. Измельченные никель и железо — пирофоры. Пирофорами называют вещества или смеси веществ, самовоспламеняющиеся на воздухе.

Оборудование: стакан химический, фильтровальная бумага, штатив с сеткой, стеклянная палочка.

Техника безопасности. Соблюдать правила работы со щелочами и правила пожарной безопасности. Все остатки пирофорного никеля уничтожить, растворив их в разбавленной азотной кислоте.

Постановка опыта и текст – к.п.н. Павел Беспалов.

Электролиз раствора иодида калия

Электролиз – разложение вещества под действием электрического тока. Электролиз иодида калия проходит с выделением щелочи, водорода и иода:

I + 2 H 2 O = 2 KOH + H 2 + I 2

Приготовим электролизер, наполненный раствором иодида калия, и две пробирки с этим же раствором. Для обнаружения щелочи в одну из пробирок добавим раствор фенолфталеина (эта пробирка – для катода), для обнаружения иода в другую пробирку добавим крахмал (пробирка для анода). Поместим приготовленные таким образом пробирки на электроды и включим ток. В одной из пробирок на катоде наблюдаем выделение водорода, раствор в этой пробирке становится малиновым: в пробирке образовалась щелочь. Во второй пробирке появилась синее окрашивание. В этой пробирке в результате электролиза выделился иод. Иод окрасил крахмал в синий цвет. Мы увидели, как при электролизе раствора иодида калия образуется иод, выделяется газ водород и гидроксид калия.

Оборудование: пробирки, штатив для пробирок, химические стаканы, пипетка, держатель для пробирок, прибор для электролиза, мензурка.

Техника безопасности . Соблюдать правила работы с электроприборами.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Электрохимический ряд напряжений — вытеснение водорода металлами.

Металлы различаются химической активностью. Металлы расположены в порядке убывания активности в ряду напряжений:

Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Au

Активные металлы (от лития до свинца) восстанавливают водород из кислот, неактивные (от меди до золота) – не восстанавливают.

Испытаем четыре металла: магний Mg, алюминий Al, железо Fe и медь Cu. Приготовим пробирки с раствором соляной кислоты (HCl) и погрузим в них металлы. Медь не реагирует с раствором соляной кислоты. Железо медленно восстанавливает водород из раствора кислоты. Алюминий более активно реагирует с раствором соляной кислоты, восстанавливая водород.

Наиболее энергично восстанавливает водород из соляной кислоты магний. Мы увидели, что металлы, стоящие в электрохимическом ряду напряжений до водорода (железо, алюминий и магний), восстанавливают его из растворов кислот.

Металлы, стоящие в ряду после водорода (в нашем опыте – медь), не восстанавливают его из кислот. Наиболее активным металлом в нашем опыте оказался магний, наименее активным ‑ медь.

2 HCl + Mg = MgC1 2 + H 2

2 HCl + Fe = FeC1 2 + H 2

6 HCl + 2Al = 2 A1C1 3 + 3H 2

Оборудование:

Техника безопасности . Следует соблюдать правила работы с растворами кислот. Не допускать попадания кислот на кожу и слизистые оболочки.

В результате реакции образуется горючий газ — водород: рядом не должно быть открытого пламени.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Электрохимический ряд напряжений металлов. Вытеснение металла из соли другими металлами

Металлы расположены в порядке убывания активности в ряду напряжений:

Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Au

Активные металлы вытесняют менее активные из растворов их солей. В первой пробирке – медь (Cu) и раствор соли менее активного металла – серебра (AgNO 3). Вторая пара – железо (Fe) и раствор соли меди (CuSO 4). Железо активнее меди. В третьей пробирке – цинк (Zn) и раствор соли менее активного свинца ‑ Pb(NO 3) 2 . В пробирках начинаются реакции. Через некоторое время посмотрим, что получилось в пробирках. Медь покрылась белыми кристаллами серебра:

2 AgNO 3 + Cu = Cu (NO 3 ) 2 + 2 Ag

На железном гвозде появился розовый налет металлической меди:

CuSO 4 + Fe = FeSO 4 + Cu

Цинк покрылся рыхлым слоем металлического свинца:

Pb(NO 3) 2 + Zn = Pb + Zn (NO 3) 2

Мы убедились в том, что активные металлы вытесняют менее активные из растворов их солей.

Оборудование: пробирки, штатив для пробирок, воронка, пинцет.

Техника безопасности . Соли свинца и соли серебра — ядовиты, остерегаться попадания на кожу и на слизистые оболочки. Раствор нитрата серебра оставляет черные пятна на одежде и на коже.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

После начала трудовыех будней времени на это дело не стало совершенно. Поэтому урвал у семьи времени, чтобы сделать несколько крутых штук.

Одна из крутых штук, с которой провозился пол дня - это русский мотив в меди. Он гуглица быстро по запросу "русский орнамент вектор".

Исходники

Бесплатный. Но на самом деле можно просто брать любую русскую роспись и векторизовать. Я его обработал, сделал края не полностью чёрными, а в шашечки, для того, чтобы тонер лучше переводился. Долго мучался и получилось вот такая штукенция


Русский орнамент в меди. Травление. Патина.


Главная беда технологии - это плохой перенос тонера. И зашкуриваю, и обезжириваю, и прогреваю, но всё равно есть огрехи. Например внизу нормально перевелось, а справа я маркером дорисовывал часть рисунка. Есть мысль, что стоит найти тяжёлый утюг.


Попытка снять фактуру

Работой не очень доволен. Она красива, но непереведённый тонер испортил всё. И большие полигоны тонер непереводит, что я не делаю.
Вообще запороть такую картинку проще простого. Другую фотографию гравюру я испортил, и что не делал - исправить не могу. Пришлось делать заново.


Испорченная работа

Работу пришлось переделать. Кстати, обнаружил, что концентрацию перекиси можно смело снижать. На 2 литра у меня отлично травит и с 50 граммами. Как я понял - действующее вещество там лимонная кислота.

А первую половину дня вчера провозился в попытке сделать клеймо, чтобы клеймить свои работы, но дальше вот этого не ушёл...


Заготовка для клейма

Главная запара перенести рисунок - невозможно прогреть такой массив стали. С самоклейки вообще перевести - ужас. Переводить с самоклейки - это просто адский геммоой. Постоянно съезжает стирая исходный рисунок. Кучу бумаги перевёл. Но главная засада была с травлением. Травил медным купоросом с солью. Результат так ужасен, что нафиг сточил результат на шкурке. В общем травить надо электрическим методом, для этого обзавёлся старинным зарядником для акумуляторных батарей:


"Бархат"


Или может ещё лимонной кислотой протравлю.

Кстати, принимаю заказы на рисунки в на текстолите или в меди (подарок любимой). Шильдики и т.п. О цене договоримся. Не лазерная гравировка, огрехи есть, но тут тем интереснее.

На вопрос Что интересного можно сделать с банкой медного купороса? заданный автором росистый лучший ответ это Можно устроить соревнование с това­рищами по выращиванию самого боль­шого кристалла медного купороса. Для этого приготовим раствор медного купо­роса: в 1/2 пробирки воды растворим при постоянном встряхивании медный купо­рос, имеющийся в наборе, до получения интенсивной окраски раствора. Полу­ченный раствор перельем в стакан и оставим его до тех пор, пока вода не испарится. На дне стакана останутся кристаллики медного купороса. Они по­хожи на косоугольники (ромбоэдры) .
Отберем несколько наиболее правиль­ных по форме кристалликов, которые и будут зародышами для выращивания больших кристаллов (рис.) .
31. ПРОЦЕСС ВЫРАЩИВАНИЯ БОЛЬШИХ КРИСТАЛЛОВ МЕДИ СЕРНОКИСЛОЙ (МЕДНОГО КУПОРОСА)
Прежде всего, необходимо приготовить раствор медного купороса, в котором кристаллики будут расти. Возьмем 3/4 пробирки воды и поместим туда немного медного купороса. Пробирку встряхива­ем до тех пор, пока купорос не раство­рится. Затем добавляем постепенно еще купороса до тех пор, пока даже после встряхивания он не растворится. Те­перь раствор нужно нагреть. Избыток медного купороса в теплой воде раство­рится. Оставим раствор до следующего дня, и купорос снова выпадает в оса­док. Жидкость над осадком или, так на­зываемый маточный раствор, сольем в стакан. Положим в маточный раствор 2-3 кристаллика, отобранные в преды­дущем опыте, так, чтобы они не каса­лись друг друга на дне стакана (рис.). Стакан закроем листом бу­маги или картона, чтобы вода не испа­рялась слишком быстро, и каждый день кристаллики будем переворачивать. Помни, они всегда должны быть пол­ностью покрыты раствором, поэтому время от времени необходимо изготав­ливать и доливать новый маточный рас­твор. Выращивание новых кристаллов проводится довольно долго, 5-ти санти­метровые кристаллы нужно выращивать полгода. Наберись терпения, и ты смо­жешь сам вырастить крупные кри­сталлы.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Что интересного можно сделать с банкой медного купороса?

Ответ от Djama [новичек]
сделай кристалл из купороса - красотище! (Не, я в серьёз)


Ответ от Вровень [гуру]
платы травить приемник сделай


Ответ от Elf [эксперт]
Я в детстве выращивал кристаллы, как описывал hugo,
еще использовал как индекатор на присутствие воды. Сначало надо прокалить медный купорос до исчезновения голубоватой окраски, т. е вся вода улетит.
В присутствие влаги, прокаленный белый купорос окрашивается в голубой далее в синий цвет...


Ответ от чистосортный [гуру]
Применяется для борьбы с грибком в сырых помещениях, например, в ванной...


Ответ от Артур Летов [гуру]
Можешь засунуть ее себе в пердачелло, например. Будет весело (я на это надеюсь).


Ответ от Вадим Мореквас [активный]
Регулярно красить купоросом ноги до колен и красиво и мандавошки не вылезут.


Ответ от Papa Jack [гуру]
в ванную насыпай перед купанием, станешь красивого "аватарного" цвета))


Ответ от Azazella [гуру]
да говорят вино на нем продают, синий камень типа, люди юга подскажут и еще морду набьют


Ответ от Николай Гаврилин [активный]
Лизни на пробу.


Ответ от Николай Тимофеев [гуру]
Сделай «Бордосскую смесь» , состоящую из медного купороса и извести.
«Бордосская смесь» или «Бордосская жидкость» применяется уже более ста лет, как один из эффективных химических препаратов в борьбе против садовых вредителей. Лучше всего плодовые деревья и кустарники обрабатывать до роспускания почек. Бордосская смесь прекрасно подходит и для обработки цветов. Основное её действие – уничтожение парши и грибковых болезней деревьев и кустарников.
Приготовление: сразу стоит сказать, что готовиться раствор в стеклянной или пластиковой ёмкости. Железную посуду раствор может попросту разъесть. Сначала отдельно разводится медный купорос – 100 грамм в небольшом количестве воды (тёплой) , затем полученный раствор доводят до пяти литров. Аналогично поступают и с известью: 100 гр негашёной извести гасится в небольшом количестве воды, раствор которой затем доводится до 5 литров. Полученную молочную смесь следует процедить. Затем наступает ответственный момент: в известковый раствор потихоньку добавляется водный раствор медного купороса при постоянном перемешивании.
Если вы всё сделали правильно, то она будет небесно-голубого цвета. Бордосскую смесь не следует хранить, а лучше сразу использовать её по назначению.

Медная проволока светится в темноте!

Сложность:

Опасность:

Реагенты

Безопасность

  • Перед началом опыта наденьте защитные перчатки и очки.
  • Проводите эксперимент на подносе.

Общие правила безопасности

  • Не допускайте попадания химических реагентов в глаза или рот.
  • Не допускайте к месту проведения экспериментов людей без защитных очков, а также маленьких детей и животных.
  • Храните экспериментальный набор в месте, недоступном для детей младше 12 лет.
  • Помойте или очистите всё оборудование и оснастку после использования.
  • Убедитесь, что все контейнеры с реагентами плотно закрыты и хранятся по правилам после использования.
  • Убедитесь, что все одноразовые контейнеры правильно утилизированы.
  • Используйте только оборудование и реактивы, поставляемые в наборе или рекомендуемые текущими инструкциями.
  • Если вы использовали контейнер для еды или посуду для проведения экспериментов, немедленно выбросьте их. Они больше не пригодны для хранения пищи.

Информация о первой помощи

  • В случае попадания реагентов в глаза тщательно промойте глаза водой, при необходимости держа глаз открытым. Немедленно обратитесь к врачу.
  • В случае проглатывания промойте рот водой, выпейте немного чистой воды. Не вызывайте рвоту. Немедленно обратитесь к врачу.
  • В случае вдыхания реагентов выведите пострадавшего на свежий воздух.
  • В случае контакта с кожей или ожогов промывайте поврежденную зону большим количеством воды в течение 10 минут или дольше.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химический реагент и контейнер от него.
  • В случае травм всегда обращайтесь к врачу.
  • Неправильное использование химических реагентов может вызвать травму и нанести вред здоровью. Проводите только указанные в инструкции эксперименты.
  • Данный набор опытов предназначен только для детей 12 лет и старше.
  • Способности детей существенно различаются даже внутри возрастной группы. Поэтому родители, проводящие эксперименты вместе с детьми, должны по своему усмотрению решить, какие опыты подходят для их детей и будут безопасны для них.
  • Родители должны обсудить правила безопасности с ребенком или детьми перед началом проведения экспериментов. Особое внимание следует уделить безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Перед началом экспериментов очистите место проведения опытов от предметов, которые могут вам помешать. Следует избегать хранения пищевых продуктов рядом с местом проведения опытов. Место проведения опытов должно хорошо вентилироваться и находиться близко к водопроводному крану или другому источнику воды. Для проведения экспериментов потребуется устойчивый стол.
  • Вещества в одноразовой упаковке должны быть использованы полностью или утилизированы после проведения одного эксперимента, т.е. после открытия упаковки.

Часто задаваемые вопросы

Проволока не светится. Что делать?

Во-первых, попробуйте немного подождать. Свечение проволоки не очень яркое, и, возможно, ваши глаза просто не успели привыкнуть к темноте. Кстати, а не слишком ли светло вокруг вас? Помните, что чем темнее вокруг, тем эффектнее получается опыт!

Во-вторых, попробуйте ещё раз окунуть проволоку в раствор и немного потереть ею по дну стакана. Скорее всего, это поможет.

В-третьих, прокалите проволоку на газовой горелке или турбо-зажигалке. Медь при взаимодействии с кислородом образует оксид меди CuO, который нужен для протекания нашей реакции.

Наконец, добавьте ещё 5 − 10 капель люминола в стакан, перемешайте и повторите пункт 6 инструкции к эксперименту.

Всё ещё не работает? Возможно, перекись водорода H 2 O 2 немного «выдохлась» и уже не подходит для эксперимента. Вы можете купить 3%-й медицинский раствор перекиси водорода в ближайшей аптеке.

Обратитесь в нашу службу поддержки, если у вас остались вопросы по этому эксперименту.

Другие эксперименты

Пошаговая инструкция

Внимание! Для этого опыта вам понадобится обеспечить темноту в помещении (начиная с пункта 6 данной инструкции). Чем темнее вокруг, тем эффектнее будет выглядеть «призрачная» медная проволока. Заранее продумайте, где вам будет удобно проводить эксперимент.

Подготовьте 3%-й раствор перекиси водорода H 2 O 2

Пошаговая инструкция

  1. В химический стакан из стартового набора вылейте 5 мл 2М раствора карбоната натрия Na 2 CO 3 .
  2. Возьмите пустую пластиковую пробирку и наполните её доверху 3%-м раствором перекиси водорода H 2 O 2 .
  3. Вылейте содержимое пробирки с перекисью водорода в стакан с раствором карбоната натрия.
  4. Добавьте 10 капель 1%-го раствора люминола в стакан.
  5. Согните фигурку из медной проволоки, как показано на рисунке. Вы можете сделать фигурку произвольной формы, например, скрипичный ключ. Главное, чтобы вам было удобно держать фигурку за длинный конец проволоки. Кроме того, опыт получится лучше, если фигурка будет ему перпендикулярна.
  6. Обеспечьте темноту в помещении. Трите проволокой по дну стакана в течение 30 секунд.
  7. Достаньте проволоку из стакана и наблюдайте свечение. Возможно, понадобится пара минут, чтобы глаза привыкли к темноте и свечение стало ярким.

Ожидаемый результат

Медь помогает перекиси водорода H 2 O 2 окислить люминол. В результате раствор люминола, оставшийся на медной проволоке, светится в темноте.

Утилизация

Слейте растворы в раковину, промойте избытком воды.

Что произошло

Почему проволока начинает светиться?

Люминол – особенное соединение. При определённых условиях при его окислении происходит выделение света, то есть множества весьма активных частичек, называемых фотонами, которые наши глаза без труда замечают.

Почему же свечение происходит именно на проволоке? Дело в том, что одним из необходимых условий протекания реакции окисления люминола является наличие вещества, способного забирать у люминола электроны, причём строго по одному. Медь для этого отлично подходит. Но так как она нерастворима в воде, реакция может протекать только при непосредственном соприкосновении с этим металлом. Итак, проволока светится потому, что на её поверхности протекает реакция окисления люминола.

Что происходит с медью?

Свечение медной проволоки происходит как в растворе, так и снаружи (в течение некоторого времени). Чем же объясняется такой эффект? Все необходимые «действующие лица» для реакции окисления люминола способны подходить к поверхности меди. Если проволока остаётся в растворе, возможен обмен между молекулами, которые есть на поверхности меди, и молекулами, свободно плавающими в воде. Поэтому свечение происходит достаточно долго. Однако если вытащить проволоку наружу, такой обмен прекратится, вместе с ним завершится реакция, и свечение постепенно угаснет.

Сама медь в этой реакции не тратится, однако значительно способствует её протеканию, точнее, ускоряет её. Соединения, которые не расходуются в реакции, но увеличивают её скорость, называют катализаторами.

Узнать больше

Каким же образом протекает обмен электронами на поверхности меди? Обратите внимание: перед появлением свечения необходимо потереть проволокой по стенкам сосуда. Это нужно для того, чтобы «оголить» поверхность меди, которая в исходном состоянии покрыта тонким слоем оксида меди CuO. После этого медь может реагировать с приближающимися к ней частицами.

Как это происходит? Представим поверхность медной проволоки: это соединённые между собой атомы меди.

Далее какому-нибудь атому меди надоедает однообразие металлической решётки, ему хочется изучить окрестности, познакомиться с новыми молекулами, например, водой. Так, атом меди покидает решётку в виде иона Cu + , оставив внутри свой электрон.

Но далеко от своих «братьев» ион меди уйти не может и не хочет. Поэтому он фактически путешествует в тонком (фактически толщиной в один атом) слое вплотную к поверхности проволоки. На самом деле таких «бродячих» ионов на поверхности меди достаточно много.

Когда рядом оказывается частица, способная отдать электроны (например, люминол), Cu + обратно переходит в Cu 0 и возвращается в металлическую решётку к своим товарищам. Всего люминол отдаёт ионам меди два электрона. «Лишний» электрон забирает себе перекись водорода H 2 O 2 . Сделав это дважды, она превращается в два гидроксил-аниона OH - :

Все эти процессы протекают на поверхности металла. Поэтому так важно, чтобы реагирующие вещества, в числе которых люминол и перекись водорода, имели возможность контактировать с медью.

Зачем нужна перекись водорода?

Перекись водорода H 2 O 2 , как и вода H 2 O, – это соединение водорода с кислородом. Однако в ней кислород чувствует себя не так уютно, как в воде, и пытается из этого состояния выйти. Поэтому перекись водорода может выступать в качестве окислителя. Именно она в конечном счёте окисляет люминол: так взбудораживает его, что люминол начинает светиться.

Зачем нужен карбонат натрия?

Перекись водорода H 2 O 2 , может, и не самый слабый окислитель, но для выполнения своей роли ей необходима особая обстановка. Всё должно быть тщательно подготовлено, все действующие лица должны быть на своих местах, чтобы застать люминол врасплох! И карбонат натрия как раз является ещё одним персонажем, благодаря которому реакция может протекать.

Окисление люминола перекисью водорода, которое в конечном счёте приводит к свечению, протекает только в щелочной среде, т.е. тогда, когда в растворе оказывается достаточно много ионов OH - . Именно такую среду создаёт карбонат натрия Na 2 CO 3 .

Узнать больше

Возникновение щелочной среды в растворе карбоната натрия связано с тем, что карбонат-ионы CO 3 2– , которые получаются при растворении этого соединения, способны взаимодействовать с водой. При этом образуются гидрокарбонат-ионы HCO 3 – и те самые ионы OH – :

CO 3 2– + H 2 O <=> HCO 3 – +OH –

Почему мы используем именно медь?

Потому что медь способна отнимать у люминола электроны по одному. Большинство металлов предпочитает переходить из металла в раствор в виде двухзарядного катиона, отдавая два электрона:

M → M 2+ + 2e –

Однако медь способна отдавать один электрон, и останавливаться на этом, переходя в форму Cu+. Этим свойством также обладают все щелочные металлы, такие как натрий Na или калий K. Но они настолько активно это делают, что их реакция с водой сопровождается сильным нагреванием или даже взрывом.

Тем не менее, такой одноэлектронный обмен характерен и для серебра:

Ag + + e – –> Ag

Ag – e – –> Ag +

Поэтому его тоже можно использовать в данном опыте. Следует отметить, что и другие металлы также будут способствовать возникновению свечения, однако оно будет менее интенсивным, чем для меди или серебра.

Развитие эксперимента

Светящаяся монетка

Проведите опыт с несколькими разными монетами, чтобы можно было сравнить результаты. Новый раствор готовить не понадобится: все необходимые компоненты уже есть в химическом стакане.

Возьмите монетку и, используя пинцет, зажим или другое удобное для этого приспособление, погрузите её в раствор. Вы можете потереть ею по дну стакана. Не забудьте проводить опыт в темноте!

Достаньте монетку из стакана. Светится ли она? Сравните разные монетки. Поинтересуйтесь, какие металлы использовались в чеканке (так называется процесс изготовления монет) каждой из монет.

Гвоздь, скрепки и другие кандидаты

Повторите опыт (можно использовать раствор, оставшийся от опыта со свечением медной проволоки) с различными небольшими металлическими предметами:

Как ещё можно заставить медь светиться?

В нашем случае медная проволока светилась благодаря особой реакции окисления люминола, в которой медь выступает в качестве ускорителя, то есть катализатора. Однако есть и другие способы заставить медную проволоку светиться. Правда, сама она будет служить исключительно в качестве металлической основы, не участвуя в процессах, протекающих на её поверхности. Для этого мы можем использовать особые вещества, которые светятся не из-за протекания химических реакций (такие вещества называют хемилюминесцентными), а из-за воздействия на них другого света (фотолюминесцентные вещества). Явление свечения вещества под воздействием источника света называют фотолюминесценцией. Она бывает двух видов: флуоресценция и фосфоресценция.

Вам наверняка попадалась на глаза яркая ядовито-зелёная или оранжевая одежда, от которой порой рябит в глазах. Такой эффект возникает из-за того, что в составе таких тканей есть вещества, способные поглощать видимый свет, переходить в так называемое возбуждённое состояние с повышенной энергией, а затем «успокаиваться», выделяя свет обратно.

Такой свет в большинстве случаев яркий и тёплый: оранжевый, зелёный, реже – голубой. Это явление называют флуоресценцией. Выделение света происходит практически сразу после его поглощения веществом. Соответствующие вещества называют флуоресцентными. Мы можем покрасить медную проволоку, используя раствор такого вещества, и она будет светиться.

Если поместить флуоресцентное вещество под свет ультрафиолетовой лампы, то свечение становится намного ярче. Дело в том, что энергия, которую получает вещество от лампы, больше, чем от обычного источника света. Хоть флуоресцентные вещества весьма интересны из-за своих свойств, они обладают важным недостатком: пока на них не попадает свет, сами светиться они не могут.

Можно вспомнить популярные детские игрушки, которые способны светиться в темноте. В состав таких игрушек тоже входят вещества, способные поглощать свет, а затем отдавать его. Причём на выходе получается свет определённого цвета (чаще всего это зелёный). Важное отличие таких веществ от люминесцентных заключается в том, что они способны «заряжаться» от света и постепенно отдавать накопленную таким образом энергию, а не делать это сразу. Их называют фосфоресцентными веществами. Их также можно нанести на проволоку, и она будет светиться.

Наконец, многие наверняка слышали о белом фосфоре – воскообразном веществе, которое тоже способно, будто само по себе, светиться в темноте. В XIX веке свойства белого фосфора активно использовались для различных мистификаций и «пугающего» эффекта. Вспомните, например, развязку расследования гениальным Шерлоком Холмсом тайны собаки Баскервилей из одноимённой повести сэра Артура Конан Дойля. Злодей использовал именно белый фосфор!

Однако белый фосфор светится не сам по себе, а из-за протекающей реакции окисления. В роли вещества, отнимающего у него электроны, выступает кислород воздуха. Поэтому нам и кажется, что белый фосфор светится сам, без какого-либо внешнего воздействия. Явление свечения, которое возникает из-за протекания определённой химической реакции, называют хемилюминесценцией. Мы также могли бы нанести это вещество на медную проволоку, чтобы она светилась в темноте, но делать этого не станем. Белый фосфор крайне ядовит (бедная собака Баскервилей!), и даже профессиональные химики, оснащённые всеми средствами безопасности, стараются избегать работы с ним.